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The evolution of frequency distributions:
Relating regularization to inductive biases through iterated learning

Florencia Reali (floreali@berkeley.edu)
Thomas L. Griffiths (tom griffiths@berkeley.edu)

Department of Psychology, 3210 Tolman Hall
Berkeley, CA 94720 USA

Abstract

The regularization of linguistic structures by learners has
played a key role in arguments for strong innate constraints
on language acquisition, and has important implications for
language evolution. However, relating the inductive biases of
learners to regularization has proven challenging. In this paper
we explore how regular linguistic structures can emerge from
language evolution by iterated learning, in which one person’s
linguistic output is used to generate the linguistic input pro-
vided to the next person. We use a model of iterated learn-
ing with Bayesian agents to show that this process can result
in regularization when learners have the appropriate inductive
biases. We then present two experiments demonstrating that
simulating the process of language evolution in the laboratory
can reveal biases towards regularization that might not other-
wise be obvious, allowing weak biases to have strong effects.
The results of these experiments suggest that people tend to
regularize inconsistent word-meaning mappings.
Keywords: iterated learning; Bayesian models; frequency dis-
tributions; word learning; language acquisition;

Languages are passed from one generation of learners to the
next via processes of cultural transmission. Such processes
introduce linguistic variation, with the generalizations pro-
duced by each generation changing the prevalence of linguis-
tic forms. A particular type of change occurs when forms
with unpredictable or inconsistent variation become more
regular over time. This process occurs in the creolization of
pidgin and learning of sign languages from non-native speak-
ers (e.g. Bickerton, 1981, see Hudson & Newport, 2005, for
a review), and is often taken as evidence for innate language-
specific constraints on language acquisition (e.g., Bickerton,
1981; DeGraff, 1999). This line of argument points toward
the need to understand how the inductive biases of individual
learners contribute to the regularization of inconsistent lan-
guage forms. Identifying this relationship can provide insight
into the constraints on the form of languages, and how words
and grammars evolve over time. In this paper we begin to ex-
plore this question for the frequencies of linguistic variants.

Learning a language with any kind of probabilistic varia-
tion requires learning a probability distribution from observed
frequencies. Over the last couple of decades, a number of
studies have accumulated showing that learners are able to ex-
tract a variety of statistics from a wide range of linguistic in-
put (see Gomez & Gerken, 2000; Saffran, 2003, for reviews).
Recent work has explored how the frequencies of linguistic
forms are learned. In this context, regularization corresponds
to collapsing inconsistent variation towards a more determin-
istic rule. The empirical evidence as to whether this occurs
with human language learners has been mixed. Hudson and
Newport (2005) trained participants on artificial languages in

which determiners occurred with nouns with varying prob-
abilities. They found that adult participants produced utter-
ances with probabilities proportional to their frequency in
training (known as “probability matching”). However, they
also found that children were much more likely to regular-
ize, producing consistent patterns that were not the same as
the training stimuli. Wonnacott and Newport (2005) extended
these results using a similar artificial language, showing that
when learners were tested on words different from those in
the training stimuli, adults did regularize. However, other re-
cent experiments seem to be at odds with this idea. For ex-
ample, Vouloumanos (2008) examined how adults track the
statistics of multiple-referent relations during word learning.
Participants were trained on novel object-word pairs. Ob-
jects were associated with multiple words, which in turn were
paired with multiple objects with varying probabilities. They
were then presented with two objects while one of the words
in was playing, and asked to select the object that went best
with the word. The results indicated that participants tended
to select responses in proportion to their frequencies, suggest-
ing that people might probability match rather than regularize
in learning multiple-referent relations.

The results outlined in the previous paragraph paint a
mixed picture of the inductive biases involved in learning lan-
guage from inconsistent input. In this paper, we take a novel
approach to this problem. First, we outline a Bayesian model
that can be used to make different kinds of inductive biases
for frequency distributions explicit. We then use this model to
characterize the consequences of a process of language evolu-
tion by iterated learning (Kirby, 2001), in which one learner’s
linguistic competence is acquired from observations of an-
other learner’s productions. This gives us a way to identify
the conditions on the inductive biases of individual learners
under which iterated learning results in regularization. We
then simulate language evolution in the laboratory, using a
variant on the task studied by Vouloumanos (2008) to show
that while studying the responses of a single generation of
participants does not reveal a bias towards regularization, this
bias becomes extremely clear after a few generations of iter-
ated learning. The results have implications for understand-
ing both language evolution and language learning, revealing
how weak biases can have a large effect on the languages spo-
ken by a community, and how simulating language evolution
in the laboratory can help to make these biases apparent.
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A Bayesian model of frequency estimation
Our goal in studying the estimation of linguistic frequency
distributions is to understand how the inductive biases of
learners influence their behavior. To satisfy this goal, we need
a formalism for describing learning that makes these induc-
tive biases explicit. In this section, we outline how the fre-
quency estimation problem can be solved using methods from
Bayesian statistics. This allows us to identify how a rational
learner with particular expectations about the nature of the
frequency distributions in a language should behave, provid-
ing a basis for exploring the effects of these inductive biases
on the evolution of frequency distributions and a method for
inferring such biases from human behavior. Our focus will be
on learning the relative frequencies of word-object associa-
tions. However, the models we develop apply to all problems
that require learning probability distributions.

Assume that a learner is exposed to N occurrences of a
referent (e.g., an object), which is paired with multiple com-
peting linguistic variants with certain probability. We will
use the example of estimating the relative frequency of two
competing words, but our analysis generalizes naturally to
larger numbers of variants, and to variants of different kinds.
We will use x1 to denote the frequency of word1 (w1) and
x2 = N− x1 to denote the frequency of word2 (w2), and θ1
and θ2 to denote the corresponding estimates of the probabil-
ities of these words. The learner is faced with the problem of
inferring θ1 and θ2 from x1 and x2.

This estimation problem can be solved by applying
Bayesian inference. The hypotheses being considered by the
learner are all possible values of θ1 (since θ2 follows directly
from this). The inductive biases of the learner are expressed
in a prior probability distribution p(θ1) over this set of hy-
potheses, indicating which hypotheses are considered more
probable before seeing any data. The degrees of belief that
the learner should assign to these hypotheses after seeing x1
are the posterior probabilities p(θ1|x1) given by Bayes’ rule

p(θ1|x1) =
P(x1|θ1)p(θ1)R

P(x1|θ1)p(θ1)dθ1
(1)

where P(x1|θ1) is the likelihood, giving the probability of ob-
serving each value of x1 for each value of θ1.

For the case of two competing words, the likelihood
P(x1|θ1) is defined by the Bernoulli distribution, with the
probability of a particular sequence of N object-word pair-
ings containing x1 instances of w1 is

P(x1|θ1) = θ
x1
1 (1−θ1)N−x1 (2)

where we assume that N is known to the learner. This likeli-
hood is equivalent to the probability of a particular sequence
of coin flips containing x1 heads being generated by a coin
which produces heads with probability θ1.

Specifying the prior distribution p(θ1) specifies the induc-
tive biases of the learners, as it determines the conclusions
that a learner will draw when given a particular value for x1.

We will assume that the frequency of w1 and w2 have a prior
probability distribution given by a Beta distribution with pa-
rameters α

2 . This flexible prior corresponds to the distribution

p(θ1) = Beta(
α

2
,

α

2
) =

Γ(α

2 )
Γ(α

2 )Γ(α

2 )
θ

α

2−1
1 (θ2)

α

2−1 (3)

where Γ(·) is the generalized factorial function (Boas, 1983).
The Beta distribution can take on different shapes depend-

ing on the values of α. As shown in Figure 1, when α/2 = 1
the density function is simply a uniform distribution. When
α/2 < 1, the density function is U-shaped and when α/2 > 1,
it is a bell-shaped unimodal distribution. Thus, despite the ap-
parent complexity of the formula, the Beta distribution cap-
tures prior biases that are intuitive from a psychological per-
spective. For example, when α/2 < 1 the prior bias is such
that the learner tends to assign high probability to one of two
competing variants, consistent with regularization strategies.
When α/2 > 1, the learner tends to weight both competing
variants equally, disfavoring regularization.

Substituting the likelihood from Equation 2 and the prior
from Equation 3 into Equation 1 gives the posterior distribu-
tion p(θ1|x1,x2). In this case, the posterior is also a Beta dis-
tribution, with parameters x1 + α

2 and x2 + α

2 , due to the fact
that the Bernoulli likelihood and Beta prior form a conjugate
pair. The mean of this distribution is x1+ α

2
N+α

, so estimates of
θ1 produced by a Bayesian learner will tend to be close to the
empirical probability of w1 in the data, x1

N , for a wide range of
values of α provided N is relatively large. Thus, even learners
who have quite different inductive biases can be expected to
produce similar estimates of θ1, making it difficult to draw
inferences about their inductive biases from these estimates.

Language evolution by iterated learning
Having considered how a single Bayesian learner should
solve the frequency estimation problem, we can now explore
what happens when a sequence of Bayesian learners each
learn from data generated by the previous learner. In learn-
ing object-word relations, this corresponds to observing a set
of objects being named, making an inference about the rel-
ative probabilities of the names, and then producing names
for a set of objects which are observed by the next learner.
More formally, we assume that each learner is provided with
a value of x1 produced by the previous learner, forms an esti-
mate of θ1 based on this value, and then generates a value of
x1 by sampling from P(x1|θ1), with the result being provided
to the next learner. The key question is how the biases of the
learners influence the outcome of language evolution via this
process of iterated learning.

Griffiths and Kalish (2007) analyzed the consequences of
iterated learning when learners are Bayesian agents. The first
step in this analysis is recognizing that iterated learning de-
fines a Markov chain, with the hypothesis selected by each
learner depending only on the hypothesis selected by the pre-
vious learner. This means that it is possible to analyze the
dynamics of this process by computing a transition matrix,
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Figure 1: The effects of inductive biases on the evolution of
frequencies. (a) Prior distributions on θ1 for α

2 = 0.1 (left),
α

2 = 1 (center), α

2 = 5 (right). Iterated learning by (b) sam-
pling or (c) MAP estimation changes the probability distri-
bution on the frequency of w1 (horizontal axis) over several
generations (vertical axis), but depends strongly on this prior.
The frequency of w1 was initialized at 5 from a total fre-
quency of 10. White cells have zero probability, darker grey
indicates higher probability.

indicating the probability of moving from one value of θ1
to another or one value of x1 to another across generations,
and the asymptotic consequences by identifying the station-
ary distribution to which the Markov chain converges as the
number of generations increases.

Further analysis of this Markov chain requires stating how
the posterior distribution is actually translated into an esti-
mate of θ1. Griffiths and Kalish (2007) identifed two such
estimation procedures: sampling a hypothesis from the poste-
rior distribution, and choosing the hypothesis with the highest
posterior probability. They demonstrated that when learners
sample from the posterior, the stationary distribution of the
Markov chain on hypotheses is the prior distribution. That
is, as the number of generations increases, the probability of
selecting a particular hypothesis converges to the prior proba-
bility of that hypothesis. In the case of frequency estimation,
this means that we should expect that iterated learning with
learners whose priors favor regularization (ie. with α

2 < 1)
will ultimately produce strongly regularized languages.

It is typically more difficult to analyze the case where
learners choose the hypothesis with highest posterior prob-
ability, known as the maximum a posteriori (MAP) hypothe-
sis. However, in the case of frequency estimation the Markov
chain defined by iterated learning is equivalent to a model
that has been used in population genetics, the Wright-Fisher
model of genetic drift with mutation (Ewens, 2004). This

equivalence makes it possible to identify an approximate sta-
tionary distribution on θ1, which is a Beta distribution with
parameters α

1+ α
N

, where N is the total frequency (ie. 10 in
the present example). A proof of this equivalence (which as-
sumes that MAP estimation is performed in the natural pa-
rameter space of the Bernoulli distribution) is provided in
Reali and Griffiths (2008). Unlike the case of sampling, fre-
quencies do not converge to the prior distribution. However,
the shape of the stationary distribution depends on the value
of priors’ parameter α. For example, it can be shown that for
all values of α < N

N−1 , the stationary distribution is U-shaped.
The transition matrices associated with these two forms of

estimation can also be computed. We will focus on the tran-
sition matrices for the values of x1, as these values are easily
observed in behavioral data. For the case of sampling, the
probability that learner t generates a particular value of x1
given the value generated by learner t−1 is given by

P(x(t)
1 |x

(t−1)
1 ) =

Z
P(x(t)

1 |θ1)p(θ1|x
(t−1)
1 )dθ1 (4)

where P(x(t)
1 |θ1) is the likelihood from Equation 2 and

p(θ1|x
(t−1)
1 ) is computed by applying Bayes’ rule as in Equa-

tion 1. For the MAP case, the value of θ1 produced as an esti-
mate is deterministically related to x(t−1)

1 , so P(x(t)
1 |x

(t−1)
1 ) is

given by Equation 2 with θ̂1 = x1+ α

2
N+α

substituted for θ1. These
transition matrices can be used to compute the probability dis-
tribution P(x(t)

1 |x
(0)
1 ) as a function of the initial frequency of

w1, x(0)
1 , and the number of generations of iterated learning, t.

The predictions of the sampling and MAP models are shown
in Figure 1. Consistent with the analysis given above, the fig-
ure shows that when the prior distribution is bell-shaped, fre-
quencies of linguistic variants converge over time to a distri-
bution where the probability mass is concentrated around the
mean. When the prior is U-shaped, the frequencies converge
to a distribution where the probability mass is concentrated
in the extremes of the distribution. Under these conditions,
the most likely situation is that one variant becomes the vast
majority in the population, while the other one becomes very
infrequent, regardless of initial conditions. This situation can
be interpreted as a regularization process.

The analyses presented in the last two sections support two
conclusions. First, since the estimates of θ1 produced by an
individual learner will be only weakly affected by their prior,
it can be hard to identify inductive biases by studying indi-
vidual learners. Second, iterated learning can magnify these
weak biases, resulting in rapid convergence to a regular lan-
guage when learners have priors supporting regularization.
These conclusions motivate the two experiments presented
in the remainder of the paper. Experiment 1 demonstrates
the difficulty of inferring the biases of learners by studying
a single generation. Experiment 2 uses an iterated version
of the same task to reveal that human learners favor regular
languages, and to explore the consequences of this bias for
language evolution by iterated learning.
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Experiment 1: A single generation
The design of Experiment 1 was inspired by Vouloumanos
(2008, Experiment 1). The experiment had a training phase
where participants were exposed to novel word-object asso-
ciations and a test phase assessing their knowledge of these
associations. However, the design differs from Vouloumanos
(2008) in that each word was associated with just one object,
and the test trials consisted of a forced choice between words
instead of objects.

Method

Participants Thirty undergraduates participated in the
study in exchange for course credit.

Materials The materials used in Experiment 1 were the
same used in Vouloumanos (2008). The auditory stimuli con-
sisted of twelve words recorded by a native English female
speaker. All words consisted of consonant-vowel-consonant
syllables with consonants p, t, s, n, k, d, g, b, m, l and vowels
æ, i, a, e, ∧ and u. Place of articulation was controlled both
between and within words. Word pairs assigned to a common
referent (object) were controlled so that they differed in the
place of articulation, the vowels and letters they contained.
The visual stimuli consisted of six out of the twelve three di-
mensional objects used in Vouloumanos (2008). The objects
differed in color and shape and were animated to move hor-
izontally as a cohesive unit. They were presented in short
videos shown on a computer screen.

Design and procedure The experiment consisted of a train-
ing phase followed by a test phase. Participants were in-
structed that they would learn a novel language. No further
information regarding the nature of the study was given in
the instructions. During the training block participants were
exposed to novel word-object associations. Each of the six
objects were presented a total of 10 times, each time paired
with one of two words (w1 and w2) with varying probabili-
ties. The frequency with which each object occurred with w1
and w2 obeyed one of six different conditions. Conditions 0,
1, 2, 3, 4 and 5, corresponded to w1 frequencies of 0, 1, 2,
3, 4 and 5, and w2 frequencies of 10, 9, 8, 7, 6 and 5 respec-
tively. For example, an object assigned to Condition 4 was
presented 4 times with w1 and 6 times with w2 in the train-
ing phase. A unique pair of w1 and w2 was presented with
a unique object. Therefore, the overall frequency of a word
was determined by the frequency with which it appeared with
its referent. Each of the six objects were randomly assigned
to one of the six frequency conditions for every participant.
The word pairs (w1 and w2) used to refer to each object were
also randomized for every participant. On each trial, the ob-
ject was presented for 3000 ms separated by 3000 ms, and the
word was played concurrently with the visual stimuli. In ad-
dition to the auditory stimuli, the word was visually presented
below the moving object.

The test block consisted of a forced choice selection task.
Participants saw one object in the center of the screen and the
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Figure 2: Results of Experiment 1, showing the mean fre-
quency of w1 selected by participants. Black dots correspond
to w1 frequency in the training stimuli and error bars indicate
one standard error.

two words associated with it where visually presented below
the object image (bottom left and bottom right). Participants
were instructed to select one of the two words pressing a key.
The position of the word in the screen (left or right) was ran-
domized across trials and participants. The six objects were
presented 10 times each to match the number of presentations
used in the training block. The order of training and test trials
was randomized for every participant.

Results
There was a significant effect of w1 frequency in the train-
ing stimuli on mean production of w1 (F(5,29) = 13.32, p <
.0001). In response to relative frequency values of 0, 1, 2, 3,
4, and 5 in the input, the mean number of w1 in participants’
productions were 0.3, 0.9, 1.6, 3.6, 4.7, and 5, respectively.
Figure 2 compares the mean frequencies of w1 produced by
participants to the frequencies of w1 in the training stimuli.

As shown in Figure 2, the mean frequency of w1 in the
productions was close to the corresponding frequencies in the
training phase. However, this pattern of performance does not
necessarily indicate that participants are probability matching
rather than regularizing. The results displayed in Figure 2 are
the group means and they could have resulted from averag-
ing across individuals who each are using only one of the two
competing words to name each object. To rule out this pos-
sibility, we examined the consistency of production among
individual participants. We found that only 6 out of 30 par-
ticipants regularized all of their productions.

The results of this experiment seem to suggest that people
probability match when learning the probabilities with which
words can be used to describe objects. These results are con-
sistent with the conclusions of Vouloumanos (2008). How-
ever, the formal analyses presented above suggested that it
may be difficult to detect a weak bias towards regularization
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Figure 3: Results of Experiment 2. (a) Frequency of w1 produced by participants (horizontal axis) per generation (vertical
axis). Each panel corresponds to increasing values of the frequency of w1 in the input to the first learner (right to left 0, 1 2,
3, 4, 5), and each line to one “family” of participants. Iterated learning with Bayesian agents using (b) sampling and (c) MAP
estimation produce predictions in correspondence with these results. White cells have zero probability, darker grey indicates
higher probability. The sampling model provides a better account of the participants’ responses.

in a single generation of learners, even though such a bias
might still have a significant effect on language evolution.
Experiment 2 was designed to investigate the possibility that
people have biases towards regularization that only emerge
over several generations of iterated learning.

Experiment 2: Iterated learning
Method
Participants Fifty undergraduates participated for course
credit. The participants formed five generations of learners
in 10 “families”. The responses of each generation of learn-
ers during the test phase were presented to the next generation
of learners as the training stimuli.

Materials The materials used in Experiment 2 were the
same as in Experiment 1.

Procedure For the 10 learners who formed the first gen-
eration of any family, the methods and procedure of the ex-
periment were identical to Experiment 1. In subsequent gen-
erations, the method and procedure were the same, except
that the frequency conditions in the training phase were de-
termined by the productions of the previous participant within
a family. That is, intergenerational transfer was implemented
by letting the frequencies of w1 (and w2) produced by a sin-
gle participant during the test phase be the frequencies of the

training items for the participant in the next generation of that
family. Participants were not made aware that their test re-
sponses would serve as training for later participants and in-
tergenerational transfer was conducted without personal con-
tact between participants.

Results

The results of Experiment 2 are shown in Figure 3. The top
row shows participants’ productions for each of the 10 fam-
ilies. The data is broken down across the six different initial
conditions of relative frequency of w1. Across all conditions,
the frequencies of w1 moved rapidly towards 0 and 10, re-
flecting a bias towards regularization. In fact, by the fourth
generation, all productions were completely regular.

The sampling and MAP models introduced above were
both fit to these data by maximum-likelihood estimation of
the parameter α. The predictions of these models are shown
in the middle and bottom rows of Figure 3. As can be seen
from the figure, the models do a good job of capturing the dy-
namics of iterated learning. For the sampling model, the value
of α that best fit the data was 0.05, giving a log-likelihood
of -266, equivalent to a probability of 0.41 of correctly pre-
dicting the next value of w1 from the previous one. For the
MAP model, the value of α that best fit the data was 0.09,
with a log-likelihood of -357, equivalent to a probability of
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0.3 of correctly predicting the next value of w1. These results
suggest that the human data are better characterized in terms
of learners sampling from their posterior distributions rather
than MAP estimation.

Two aspects of the data are nicely captured by the model.
First, as shown in the middle and bottom panels in Figure 3,
the values of w1 selected by learners in early iterations are
close to the initial frequency of w1. Thus, the model pre-
dicts responses that are consistent with probability matching
when a single generation is considered. Second, the best fit-
ting model is one where the prior distribution is U-shaped
(see Figure 1, left panels). This means that the distribution
over frequencies should converge to an equilibrium where
one variant becomes the vast majority in the population, while
the other one becomes very infrequent. Thus, the model pre-
dicts regularization of inconsistent language forms as a con-
sequence of learners’ inductive biases.

Discussion
Experiment 1 revealed that when participants were exposed
to inconsistent word-meaning mappings, the frequencies de-
termined by their responses were close to the frequencies
present in training stimuli. This is consistent with the predic-
tions of our Bayesian model. Moreover, the results are in ac-
cord with the pattern of responses reported by Vouloumanos
(2008), which showed that participants were sensitive to fine-
grained patterns of word-meaning mappings. The results of
Experiment 2, however, revealed a trend toward regulariza-
tion that was not obvious in a single generation. The distribu-
tion over competing words converged toward an equilibrium
where one of the variants becomes the vast majority in the
population. The dynamics of convergence again matched the
predictions of our Bayesian model. This pattern of results
indicates that weak regularization biases may have a strong
effect on language change over time, and that iterated learn-
ing provides an effective method for revealing the inductive
biases of human learners.

The results suggest that learners’ inductive biases may fa-
vor regularization of inconsistent language forms. However,
the question remains of how these inductive biases – repre-
sented in our model as a prior distribution – should be in-
terpreted from a psychological viewpoint. The model’s prior
distribution should not necessarily be interpreted as the re-
sult of innate constraints specific to language. Rather, learn-
ing biases affecting the formation of linguistic representations
could come from a number of domain-general constraints on
learning, such as information-processing constraints, limita-
tions on working memory; or the inductive bias associated
with some kind of general-purpose learning algorithm. An-
other possibility is that the biases reflected by the model’s
prior distribution are not innately specified but the result of
previous domain-specific experience.

Iterated learning models capitalize on the fundamental re-
lation between language acquisition and language evolution.
For example, certain types of language change may result

from misalignments of the learner’s and adult’s hypothesis of
the data (Pearl & Weinberg, 2007). This means that mod-
eling language evolution may provide an effective way to
empirically test hypotheses about language acquisition. It-
erated learning offers a method to do this in the laboratory,
connecting acquisition and evolution in a way that allows us
to make contributions to understanding both of these pro-
cesses. First, consistent with recent work on language evo-
lution (Kirby, Dowman, & Griffiths, 2007), the experiments
show how weak inductive biases can have strong effects in
shaping linguistic distributions. Second, the results indicate
that inductive biases can be hard to identify by testing indi-
vidual learners, while they become evident in the context of
language evolution. This suggests that a full understanding
of the constraints on language acquisition might require the
combination of multiple empirical approaches, including the-
oretical and empirical investigation of language evolution.
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