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Human language arises from biological evolution, individual learn-
ing, and cultural transmission, but the interaction of these three
processes has not been widely studied. We set out a formal
framework for analyzing cultural transmission, which allows us to
investigate how innate learning biases are related to universal
properties of language. We show that cultural transmission can
magnify weak biases into strong linguistic universals, undermining
one of the arguments for strong innate constraints on language
learning. As a consequence, the strength of innate biases can be
shielded from natural selection, allowing these genes to drift.
Furthermore, even when there is no natural selection, cultural
transmission can produce apparent adaptations. Cultural transmis-
sion thus provides an alternative to traditional nativist and adap-
tationist explanations for the properties of human languages.

cultural transmission | iterated learning | Bayesian learning | nativism

ne of the key challenges for cognitive science is to explain

the structure of human language. Although languages vary,
they share many universal structural properties (1, 2). Where do
these universals come from? A great deal of research has
proceeded under the assumption that this is essentially a bio-
logical question (3): that languages have the structure they do
because of our innate faculty for acquiring (4) and processing (5)

parts: the process by which innate biases influence the language
learned by each individual, and the process by which cultural
transmission affects the languages represented in a population.
We will consider these two parts in turn.

To understand the link between biological predispositions and
language structure, we need an account of the effect of innate
biases on the language learned by each individual in a popula-
tion. One such account assumes that learners apply the principles
of Bayesian inference (10). This approach is widely used as a
standard for rational inference in statistics (11), decision theory
(12), and machine learning (13), and Bayesian methods are used
in computational linguistics (14), psycholinguistics (15), and
evolutionary linguistics (16). Formally, learners are faced with
the problem of how to use the data provided by the linguistic
behavior of others to select among a set of candidate hypotheses
concerning the language they are exposed to. Letting / denote
a particular hypothesis and d the data, we can express the prior
biases of learners in a probability distribution, P(%), indicating
their degrees of belief concerning the different hypotheses
before seeing d. Bayesian inference is a procedure for updating
these degrees of belief in light of the evidence provided by the
data. The “posterior” probability, P(h|d), of a hypothesis & after
seeing data d, is obtained via Bayes’ rule,

language. Linguistic universals thus become evidence for strong P(d|h)P(h)
innate constraints on language acquisition: if all languages share P(h|d) = W [1]
some feature, then that feature is assumed to arise from a (d|h")P(h)

constraint imposed by our language faculty. Naturally, this leads
to an attempt to understand language in the light of biological
evolution: if language structure has implications for our biolog-
ical fitness and that structure is determined by our innate
endowment, then natural selection seems like the most relevant
explanatory mechanism (6). If this reasoning is sound, we can
read-off properties of the human faculty of language (and learn
about its evolution) by uncovering the universal structural
generalizations underlying languages.

In this paper, we argue that there are serious problems with
this orthodox evolutionary/biolinguistic approach. It treats lan-
guage as arising from two adaptive systems, individual learning
and biological evolution, but in doing so misses a third: cultural
transmission (refs. 7-9, Fig. 1). The surprising consequences of
taking all three adaptive systems into account are that strong
universals need not arise from strong innate biases, that adap-
tation does not necessarily imply natural selection, and that
cultural transmission may reduce the selection pressure on
innate learning mechanisms. Our conclusions call into question
the existence of strongly constraining biological predispositions
for language, and the prominence of adaptationist explanations
for the structural properties of languages.

The traditional evolutionary approach to language is missing
an essential piece: a characterization of the mechanism linking
our biological predispositions and the languages that are actually
spoken in human societies (Fig. 2). Identifying the relationship
between genes and languages is crucial, as it determines how we
infer innate predispositions by looking at languages, and ulti-
mately whether we need to take this linking mechanism into
account when considering the biological evolution of the human
language faculty. We can break this linking mechanism into two
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In this approach, the degree to which a learner should believe
in a particular hypothesis (i.e., a language) is a direct combina-
tion of their innate biases, as expressed in the prior, P(%), and the
extent to which the data are consistent with that hypothesis,
given by P(d|h). The learner can then choose to adopt a
particular language based on these degrees of belief. For exam-
ple, learners might select the language that has highest posterior
probability, sample from their posterior distribution, or do
anything in between.

Bayesian inference provides a framework in which we can
experiment with different assumptions about the effects of
innate predispositions on language learning. However, learning
is only part of the mechanism linking genes and the languages
spoken in human societies. To determine the expected distribu-
tion of languages given a particular bias we also need to model
the other part of this mechanism: the cultural transmission of
language. The linguistic behavior a learner is exposed to as input
is itself the output of learning by other individuals. Similarly, the
language the learner acquires will ultimately produce data for a
later generation of learners. The expected distribution of lan-
guages for a given prior bias is therefore a population-level
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Learning mechanisms
determine cultural dynamics

Genes shape
learning mechanisms

Emergent universals
affect fitness landscape

Fig. 1. The structure of language arises from the interactions between three complex adaptive systems. As individuals, we acquire language using learning
mechanismsthat are part of our biological endowment (characterized in this paper in terms of prior bias). This learning machinery acts as the mechanism by which
language is transmitted culturally through a population of individuals over time. Ultimately, this process of cultural transmission leads to a set of language
universals (which can be expressed as a distribution over types of languages). The relationship between learning machinery and consequent universals is
nontrivial but can be uncovered using the framework developed here. Finally, the structure of languages that emerge from this process will affect the fitness

of individuals using those languages, which in turn will lead to the biological evolution of language learners, closing the loop of interactions.

phenomenon that emerges out of the dynamics of cultural
transmission, a process we call iterated learning (17-22).

Simplifying, we treat the population as consisting of a chain of
individuals, one per generation, each learning from the output
of the previous generation and producing utterances that are
provided as input to the subsequent generation. If we focus just
on the languages acquired by the sequence of learners, we can
analyze iterated learning as a Markov process: the probability
that a learner acquires a particular language depends only on the
language acquired by the preceding learner (22-25). When these
probabilities are calculated for all languages, they form a tran-
sition matrix, representing the probability of transitioning from
any one language to any other. The transition probabilities are
determined by the learning algorithm used by the learners, and
the way in which the data they are exposed to are selected.
Formally, the probability that the learner n chooses hypothesis
i given that learner n — 1 chose hypothesis j is

P(h, = ilh, 1 =) = >, Pr(h, = ild)Pp(d|h, | =)), [2]
d

where Py (h|d) is the probability that a learner will select hy-
pothesis & after observing data d, and Pp(d|h) is the probability
of producing the data d under hypothesis 4. It is well known that
the stationary distribution over states in the Markov chain is
proportional to the first eigenvector of the transition matrix,
providing the Markov chain is ergodic. (That is, so long as each

genotype phenotype

Genes

A

state is reachable from every other state in a number of steps that
has no fixed period.) Normalizing the first eigenvector so that it
totals one thus reveals the probability of a learner speaking any
particular language once iterated learning has converged on a
stationary distribution; essentially, the expected distribution of
languages emerging from cultural evolution.

To illustrate the behavior of this model, we will assume that
language is a noisy mapping between meanings and signals and
that, in each generation, learners are exposed to a random subset
of the pairs defined by this mapping for the previous generation’s
language. The size of this subset imposes an informational
“bottleneck” on cultural transmission, and is a crucial parameter
in our model. The other important parameter is, of course, the
prior bias. For this example, we will assume that learners have
a prior expectation of predictability. That is, languages which
employ a systematic scheme for expressing different meanings
will be assigned a higher prior probability than those that treat
each meaning separately and idiosyncratically.

To simplify, we represent languages as a pairing of meanings
to classes rather than signals. These classes correspond to
different possible strategies for expressing a meaning. By ab-
stracting away from an explicit representation of signals, we have
a straightforward way of interpreting our bias for predictable
systematicity: a systematic language will be one in which all of the
meanings belong to the same class, whereas a completely
idiosyncratic language will have no two meanings in the same
class. To give a concrete example, in the case of morphology, we

Fitness derived
from language structure

Selection operates
on genes

BIOLOGICAL EVOLUTION

Fig.2. Thelink between biological predispositions and language structure. Genes (in combination with the nonlinguistic environment) give rise to mechanisms
for learning and processing language. These determine our innate predispositions with respect to language (our prior linguistic bias). Bias is a property of an
individual, but the (universal) structure of human language emerges from the interaction of many individuals over time. Therefore, cultural transmission bridges
the link between bias and universals. Although genes code for bias, biological fitness will in part be governed by the extended phenotype (i.e., language
structure). To understand language evolution, we must understand this linking mechanism.
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can consider different ways of making past tense forms of verbs
in a language as corresponding to distinct classes. A completely
regular language would use the same past-tense form for every
verb; that is, the same class would be assigned to every meaning.
A language with a great deal of irregularity, on the other hand,
would have a less predictable pairing of meanings and classes.
Similarly, we can envisage a higher-level interpretation of our
scheme by applying it to the syntax of a language as a whole.
Languages with compositional syntax assign signals to meanings
in a predictable and systematic manner; in other words, they use
the same encoding strategy for every meaning. An evolutionarily
early form of protolanguage that has been hypothesized (26) has
no such systematic syntax, but instead treats every meaning
holistically. In such a protolanguage, the signal for every mean-
ing must be learned individually, and no generalizations are
possible. Recasting this in terms of meanings and classes, a
compositional language is simply one which treats each meaning
as belonging to the same class, whereas a nonstructured proto-
language assigns each meaning a distinct class.

We use a scheme for assigning prior probabilities to languages
that allows us to vary the strength of the prior; in other words,
how skewed the expectation of the learner is toward systematic
languages, in which the assignment of classes to meanings is
relatively predictable (see Methods for details of the prior). Our
central question is: how does this parameter of the bias (our
model of innateness) relate to the stationary distribution (the
types of language that emerge)? Using the Bayesian model
outlined above, and the initial assumption that learners always
choose the language with the highest posterior probability, we
find striking evidence that the prior bias is not a good predictor
of the resulting distribution of languages (Fig. 3). In particular,
for a range of parameters, the strength of the bias has no effect
whatsoever on the languages that emerge. As long as the relative
ranking of languages is preserved, even a tiny innate preference
for systematicity can have a large effect, due to the process of
cultural evolution. Equally, it is not simply the case that the
language with the highest prior probability is the only one
represented in the stationary distribution. Rather, it is the
number of training examples, the cultural bottleneck, that de-
termines how systematic languages become.

How does this model relate to real language? If we return to
the morphological example given above, we can see that there is
variation in systematicity within and across languages. For
example, the verbal paradigm of English is partially regular (e.g.,
walk-walked) and partially idiosyncratic (e.g., go-went). The
regular pattern is by far the most dominant if we look across
verbs, but interestingly, the irregular verbs tend to be highly
frequent (17, 27). This pattern is seen in many languages and has
the hallmarks of an adaptation. Regularity is adaptive for
infrequently expressed meanings because it maximizes the
chance of being understood by another individual with different
learning experience to you. It is less relevant for frequently
expressed meanings because there is a greater chance that two
individuals will have previously been exposed to the same form.
In fact, irregularity might be preferred for these meanings if, for
example, it enables the use of a shorter and therefore more
economical form.

To examine whether the relationship between frequency and
regularity needs to be explained as an adaptation, we can use the
model to compute the distribution of regulars and irregulars
when some meanings are expressed more frequently than others.
When the frequency of meanings is skewed in this way, we find
precisely the attested frequency/irregularity interaction (Fig. 4).
Note that this relationship is not coded anywhere in the innate
predispositions of the individuals in the population, nor is there
any selective pressure favoring optimal communication. The
apparent adaptation thus arises purely from the process of
cultural transmission, providing an alternative to the adapta-

Kirby et al.

0.25
O Prior & m=10
A < m=6 & m=3
2
3
[
Q
[
[o}
O
£
aaaa aaab aabb aabc abcd
regular irregular
0.25
O Prior o m=10
A < m=6 & m=3
0.20 %
> 0154
=
[
Q
[
Q 0.10
0.05 5
50 B o O a
Ly =F L4
aaaa aaab aabb aabc abcd
regular irregular
Fig. 3. Results of iterated learning. Cultural transmission amplifies innate

bias. Even with a very weak bias in favor of regularity (i.e., a consistent
mapping from meanings to classes), regular languages predominate in the
emergentdistribution of languages. These graphs show the probability of five
particular languages, each with a different degree of regularity, on the same
plot as the learners’ prior expectation of those languages. (Each language has
four meanings and four classes, represented here by letters.) As the number of
training examples is reduced (i.e., the bottleneck becomes tighter), regularity
is increasingly favored. The strength of the bias (how skewed it is in favor of
regularity) has no effect on the results.

tionist explanation for the prevalence of this relationship across
languages.

These results demonstrate that strong universals need not
imply strong innate constraints on learning and that biological
evolution is not the only potential explanation for adaptive
structure in language. This raises an important question: under
what circumstances do weak biases result in strong universals?
To investigate this question, we examined the consequences of
learners using a more general class of strategies for choosing a
particular language given the posterior distribution and an
approach that potentially allows the hypotheses and data to take
arbitrary forms rather than the meaning-class mappings used in
our previous analyses. If we assume that learners choose a
particular hypothesis with probability Py (h|d) proportional to
[Pp(dh) P(h)], we obtain a class of strategies that interpolates
between two special cases: sampling from the posterior distri-
bution when r = 1, and selection of the hypothesis with highest
posterior probability when r approaches infinity. We can then
examine the consequences that different values of » have on the
stationary distribution of the resulting Markov chain.

In the special case where learners sample from the posterior
(i.e., r = 1), the stationary distribution is simply the prior (22).
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Fig. 4. The emergence of an adaptive irregularity/frequency interaction.
Cultural transmission results in languages where the probability of a meaning
being irregular (i.e., not being assigned the majority class) is correlated with
its frequency; this is despite the fact that learners in this model have a prior
expectation that all meanings are equally likely to be irregular. This result
mirrors what is found in real languages and has the hallmarks of an adapta-
tion. This graph shows the probability of each meaning not being in a majority
class, and the frequency of each meaning is inversely proportional to its rank.
It was derived through simulation over a million iterations because the more
complex languages used in this simulation made calculation of the whole
transition matrix infeasible.

Obtaining general results for the consequences of increasing r is
complicated, but if we place some constraints on the structure of
languages we can still determine the stationary distribution
analytically. Here, we constrain our languages such that P(d|h)
is either constant or zero across all hypotheses £ for all data d.
This is not an overly restrictive constraint; for example, it is
satisfied by the set of deterministic languages, with a unique
signal for each meaning and an arbitrary distribution over
meanings. With a set of languages that satisfies this constraint,
the probability that a particular hypothesis  will be produced by
iterated learning is proportional to P(k)" (see Methods for proof).
The implications of this are clear: languages will be systemati-
cally overrepresented with respect to their prior probabilities for
values of r > 1. That is, weak biases will produce strong universals
if learners choose hypotheses in a fashion that disproportionately
favors hypotheses with higher posterior probabilities.

Conclusion

Our analyses demonstrate that, by mediating between innate bias
and resulting behavior, culture may profoundly influence the
evolutionary process. We have shown that the strength of bias can
be completely obscured by iterated learning. Genes may code for
the strength of a learning bias, but fitness (and hence selection of
those genes) is determined by the extended phenotype: in this case,
the properties of languages that emerge in populations. Genes
controlling strength of bias could therefore be shielded from
selection, so culture may introduce neutrality to the fitness land-
scape of learners. This has potentially far reaching consequences.
For example, if strong learning biases must be maintained against
mutation pressure (28), the introduction of cultural transmission
may lead to a weakening of these innate biases.

The implications of our results are not restricted to human
language. They have relevance to any behavior that is passed
between generations through learning. For example, some bird
species produce songs that exhibit particular structural universals,
but they have nevertheless been shown to be capable of learning
artificially constructed songs that violate these universal constraints
(29). This is exactly the sort of result we would predict if a weak

5244 | www.pnas.org/cgi/doi/10.1073/pnas.0608222104

learning bias is being amplified by cultural transmission through
iterated learning.

Language is therefore the result of nontrivial interactions
between three complex adaptive systems: learning, culture, and
evolution. As such, it is an extremely unusual natural phenom-
enon. Taking the role of culture into account provides alterna-
tive explanations for phenomena that might otherwise require an
explanation in terms of innate biases or biological evolution.
Ultimately, if we are to understand why language has the
universal structural properties that it does, we need to consider
how learning impacts on cultural transmission, and how this
affects the evolutionary trajectory of learners.

Methods

Meaning-Class Mapping Model. In this model, we assume that a
language consists of a mapping from a set of » meanings to a set
of k classes. The data observed (and produced) by each learner
consist of m pairs of meanings and classes. The probability of the
set of meaning-class pairs d being produced given that a learner
speaks the language corresponding to / is given by

Pu(dh) = [ PO, hPk), [3]

xy)ed

where x is a meaning and y is a class that is produced in response
to that meaning. This equation assumes that the class produced
in response to each meaning is independent of the other
meanings for which that learner has produced classes. In the
initial study (Fig. 3), P(x) is equal for each x. Noise in the
linguistic transmission process is modeled by incorporating a
parameter e that corresponds to the probability that a different
class to the correct one will be chosen for each production. The
probability of producing a particular class in response to a given
meaning if a learner speaks language # is therefore

1 —¢ ify is the class corresponding to x in &

PGy, h) = kiil otherwise. 4]

The prior probability assigned to each language, 4, is

T(ke) .
P(h) = [(@)T(n + ka) [Iro + o), [5]

j=1

where n; is the number of meanings expressed using class j. I'(x)
is the generalized factorial function, with I'(x) = (x-1)! when x is
an integer. « is a parameter that controls the strength of the
prior, with low values of « creating a strong prior bias in favor
of regularity, and high values creating a relatively flat prior, in
which the probability assigned to the most regular languages is
only slightly greater than that assigned to the most irregular. This
prior is a special case of the Dirichlet-multinomial distribution
(30). Its use means that the Bayesian inference mechanism can
be seen as a form of minimum description length (31). This is
because the probability assigned to each language corresponds
to the amount of information needed to encode it in a minimally
redundant form if information theory (32) is used to relate
probability to entropy. In the cases considered in this paper,
there was a language with each possible mapping of meanings to
classes, given the number of meanings and classes available.

Proof of Weak Biases Producing Strong Universals. We now allow £
and d to correspond to any form of language, not just meaning-
class mappings, so long as the Markov chain on /% is ergodic. By
definition, the stationary distribution = of a Markov chain
satisfies the expression

Kirby et al.
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> P(hy |l why,). [6]

hn

W(hn+1) =

For the Markov chain defined by Eq. 2, this becomes

whyir) = 20 D Prhy | d)Pp(d|h,) m(h,). (71

hy d

Taking Py (h|d) to be the exponentiated posterior distribution,
as described above, we obtain

PFdhn+1Phn+l !
EE[(l )Py 11)]

(1) = 2 [Pp(d|h)P(h)]"

Pp(d|h,)m(h,).  [8]

In general, finding an analytic solution to this equation can be
challenging. However, we can make the simplifying assumption
that for each hypothesis, any data d have a probability Pp(d|h) of
either 0 or some constant value f(d). Under this assumption, the
stationary distribution reduces to

Phn+1
DD (1)

W(hn+1) »
hn dChn+1 E P(h)

PP(d|hn)7T(hn)7 [9]
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where d C h indicates that Pp(d|h) = f(d). Exchanging the sums
produces

>, w(h,)

i) = Plho) S fd) e [10]
dChp+1 Ep(h)
h>Dd

which it is easy to check is satisfied by w(h) = P(h)"/Z, P(h')

because Zqcnf(d) = 1 for any /. Note that the noisy meaning-
class mapping model used in our previous analyses does not fall
within the set of languages to which this result applies unless
& = 0 and that this result does not predict the “bottleneck™ effect
discussed in the text because the posterior distribution is invari-
ant to the amount of information provided by the data d. From
this, we infer that some form of noise in the system is critical for
the “bottleneck” effect to occur, although establishing the exact
conditions under which this effect arises is an interesting prob-
lem for future research.

We thank the members of the Language Evolution and Computation
research unit in Edinburgh, M. Johnson, M. Kalish, S. Lewandowsky, and
T. Lombrozo for many discussions of this work during its infancy. M.D.
was supported by Economic and Social Research Council (ESRC) and
Japan Society for the Promotion of Science Postdoctoral Fellowships
(ESRC award PTA-026-27-0760), and T.L.G. was supported by National
Science Foundation Grant BCS-0544708.

16. Briscoe EJ (2002) in Linguistic Evolution Through Language Acquisition, ed
Briscoe EJ (Cambridge Univ Press, Cambridge, UK), pp 255-300.

17. Kirby S (2001) IEEE Trans Evol Comput 5:102-110.

18. Kirby S, Hurford J (2002) in Simulating the Evolution of Language, eds
Cangelosi A, Parisi D (Springer, London), pp 121-148.

19. Smith K, Kirby S, Brighton H (2003) Artificial Life 9:371-386.

20. Kirby S, Smith K, Brighton H (2004) Studies Lang 28:587-607.

21. Brighton H, Smith K, Kirby S (2005) Phys Life Rev 2:177-226.

22. Griffiths TL, Kalish ML (2007) Cognit Sci, in press.

23. Niyogi P, Berwick RC (1997) Complex Syst 11:161-204.

24. Nowak MA, Komarova NL, Niyogi P (2001) Science 291:114-118.

25. Nowak MA, Komarova NL, Niyogi P (2002) Nature 417:611-617.

26. Wray A (1998) Language Commun 18:47-67.

27. Francis N, Kucera H (1982) Frequency Analysis of English Usage: Lexicon and
Grammar (Houghton Mifflin, New York).

28. Deacon TW (2003) in Evolution and Learning: The Baldwin Effect Reconsidered,
eds Weber B, Depew D (MIT Press, Cambridge, MA).

29. Hultsch H (1991) Anim Behav 42:883-889.

30. Johnson NL, Kotz S (1972) Distributions in Statistics: Continuous Multivariate
Distributions (Wiley, New York).

31. Rissanen J (1978) Automatica 14:465-471.

32. Shannon CE (1948) Bell System Tech J 27:379-423 and 623-656.

PNAS | March 20,2007 | vol. 104 | no.12 | 5245

EVOLUTION

PSYCHOLOGY



