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Attaching meaning to arbitrary symbols (i.e. words) is a
complex and lengthy process. In the case of numbers, it
was previously suggested that this process is grounded
on two early pre-verbal systems for numerical quantifi-
cation: the approximate number system (ANS or ‘ana-
logue magnitude’), and the object tracking system (OTS
or ‘parallel individuation’), which children are equipped
with before symbolic learning. Each system is based on
dedicated neural circuits, characterized by specific
computational limits, and each undergoes a separate
developmental trajectory. Here, I review the available
cognitive and neuroscientific data and argue that the
available evidence is more consistent with a crucial role
for the ANS, rather than for the OTS, in the acquisition of
abstract numerical concepts that are uniquely human.

Neurocognitive start-up tools
Current theories of cognitive development posit that
knowledge acquisition is based on a limited set of ‘core
knowledge’ systems, defined as domain-specific represen-
tational priors that guide and constrain the cultural acqui-
sition of novel representations [1,2]. This notion fits well
with a recent proposal that cultural learning occurs by a
partial reconversion (‘cortical recycling’) of a few cerebral
circuits initially selected to support evolutionary relevant
functions, but sufficiently plastic for changing their coding
scheme and acquiring new functions [3]. The combination
of these two ideas defines the notion of a ‘neurocognitive
start-up tool’. In the specific case of numbers, I review the
features of two pre-verbal systems for numerical quantifi-
cation, the approximate number system (ANS) and the
object tracking system (OTS), and critically assess their
role in the cultural learning of symbolic numbers. Although
the evidence is as yet inconclusive, I argue that the cur-
rently available cognitive and neural data are more con-
sistent with a foundational role of the ANS, rather than the
OTS, in the acquisition of more elaborate numerical con-
cepts.

The approximate number system
Approximate number, much like colour or shape, is a basic
feature of the environment to which animals appear wired

Review

Glossary

Cardinality: a property of sets indicating the number of elements in

the set.

Dyscalculia: a specific learning disability that affects the acquisition

of knowledge about numbers and arithmetic.

MVPA algorithm: classification algorithm based on the distributed

pattern of activation over multiple voxels within a given brain region.

Phonological awareness: an individual’s awareness of the phono-

logical structure of words. It includes the ability to distinguish

different units of speech, such as individual phonemes in syllables,

syllables in words and rhymes between words. Phonological skills

are crucial for the development of reading, as they are an important

and reliable predictor of later reading ability [88,89].

Scalar variability: a property of the response distribution in estimation

tasks (including numerosity estimation), whereby themean responses

and standard deviation of the responses are proportional to each other

as the quantity to be estimated varies, such that the coefficient of

variation (standard deviation/mean) is constant across a range of

quantities. Scalar variability is an instance of Weber’s law [90].

Subitizing: the rapid, accurate and confident judgment of the number

of items in small collections ‘at a glance’, without counting. Subitizing

is thought to emerge from the ability to allocate attention over multiple

individual items in parallel (i.e. the OTS system) [34,91].

Successor function: a rule establishing the existence of a minimal

quantity, ONE, which corresponds to the minimal distance between

two successive numbers.

Weber fraction: the smallest variation to a quantity that can be readily

perceived. When performing numerosity discrimination threshold

experiments, the first analysis is often aimed at establishing whether

Weber’s lawholds for thatsetofdiscriminations. If itdoes, thenextstep

is to determine what the Weber fraction is. The Weber fraction can be

straightforwardly derived from the accuracy performance as the dif-

ference between the two closest discriminable numerosities normal-

ized by their size, and can also be expressed as a percentage. Better fits

of numerosity response functions can be obtained by modeling the

task with more refined psychophysical functions, including some free

parameters accounting for response biases that, in particular condi-

tions,might influenceperformance[23,92,93]. Themeasurederivedby

thismethodhasbeenlabeled ‘internalWeber fraction’ todifferentiate it

from the ‘behavioral Weber fraction’. Irrespective of the method used

to estimate the Weber fraction, different studies find broadly conver-

gent results that an average adult can reliably discriminate sets with a

numerical ratio of 7:8 (a Weber fraction of � 0.15) [22,23,64,91,92].

Weber’s law: a psychophysical law describing the relationship be-

tween the physical and the perceived magnitude of a stimulus. It states

that the threshold of discrimination (also referred to as ‘smallest

noticeable difference’) between two stimuli increases linearly with

stimulus intensity. Weber’s law (as first demonstrated by Gustav

Fechner [14]) can be accounted for by postulating a logarithmic rela-
tion between the physical stimulus and its internal representation.
to attend to: spontaneous extraction of an approximate
Corresponding author: Piazza, M. (manuela.piazza@gmail.com).

Dp = K*DS/S: where Dp is the smallest noticeable difference; DS is

the physical difference and S is the stimulus intensity.
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number of objects in sets is reported in several species, both
in the wild and in more controlled laboratory settings
(reviewed in [4]). For example, macaque monkeys sponta-
neouslymatch the approximate number of individuals they
see to the number of individuals’ voices that they hear [5];
they also sum up visual and auditory stimuli to estimate
their total number, without previous training [6]. The
evolutionary relevance of such ability is clear: appreciation
of number (e.g. of ingroup versus outgroup members) can
be crucial for social behavior [7,8], foraging [9] and repro-
ductive strategies [10]. Although not precise, number
representations in non-human animals can be mentally
combined to perform complex operations, such as compari-
son, addition and subtraction across sets [11,12]. In
humans, a similar spontaneous detection of the approxi-
mate number of objects in sets, even across different
sensory modalities, is reported surprisingly early, from
the first hours of life [13]: newborn babies habituated for
someminutes to auditory sequences of a given number (e.g.
six syllables), look longer at numerically matching visual
sets (e.g. six dots) subsequently presented to them than to
non-numerically matching sets (e.g. 18 dots). However,
0.5 1 adults
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they fail with sets differing numerically by smaller ratios;
for example, 6 versus 12 elements. This suggests a shared
evolutionarily ancient innate system for approximate
number: the ANS.

The most important defining feature of the ANS is that
it represents number in an approximate and compressed
fashion, in such a way that two sets can be discriminated
only if they differ by a given numerical ratio, according to
Weber’s law (see Glossary). Weber’s law (as first demon-
strated by Fechner [14]) can be accounted for by postulat-
ing a logarithmic relation between the physical stimulus
and its internal representation. Most current models of the
internal representation of number assume that such loga-
rithmic relation comes from the compressed nature of the
internal representation of numerosity itself. For some
models, this takes the form of equally spaced mental
magnitudes with increasing noise [15] whereas for other
models, it takes the form of logarithmically spaced mental
magnitudes with fixed noise [16,17]. Taking a different
perspective, other researchers have suggested that the
origin of the weberian nature of numerosity compression
is to be found in the computational processes engaged
 Round numbers accurately discriminated
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during the judgment of relative numerical magnitude [18].
Although theoretically possible, this hypothesis is not
supported by neuroimaging data, which show a weberian
neural response to number even in conditions in which
subjects do not perform any explicit computations on the
stimuli but simply observe sets of different numbers [19].

Irrespective of the specific model of the internal repre-
sentation of number assumed, the Weber fraction can be
safely taken as an index of ANS acuity. Interestingly, the
ANS acuity varies across individuals, and this variability is
present from early in life [20–22]. Moreover, it is not stable
across the life span but increases consistently during devel-
opment [22,23], most dramatically during the first years of
life: whereas newborns can discriminate sets differing by a
minimal numerical ratio of 1:3 at birth [13], at six months
their acuity increases to 1:2, and to 2:3 at approximately 9 to
12 months of age [20,24,25]. Between the third and fourth
year, children can discriminate reliably between sets with a
3:4 ratio, and can become sensitive to an adult-like 7:8 ratio
at approximately 20 years of age [22,23] (Figure 1).

Neuroimaging techniques have been used to investigate
extensively the neuronal underpinnings of the ANS in
humans. Converging results using passive fixation [19],
as well as tasks such as numerosity comparison [26], or
Figure 2. The neural basis of the ANS and the OTS. (a) Mid-Parietal regions showing web

experiment investigating the neural underpinning of the ANS in human adults. Adaptatio

rarely, were sets of variable number along a continuum spanning from half to double t

function of the ratio between the deviant and the adaptation number, according to We

embedded in sequences of repeated numerically fixed stimuli (EEG adaptation) chara

parietal electrodes are modulated by the size of the numerical change between the devia

small change; L-MC: large number, medium change; L-LC: large number, large change) a

Posterior parietal regions which activity shows OTS signature (linearly increasing respo

visual short term memory (VSTM) experiment [39]. Subjects were shown sets of one to

detect a change in color of one of the items. Paralleling behavioral responses, measure

parietal activation shows a set-size limit at approximately three or four items. The same

memory (IM) task consisting of detecting the presence of a given color in the same

recordings of activity evoked by numerically deviant stimuli embedded in sequences of

to three items, the amplitude of an early (150 ms post-stimulus) negative peak (N1), over

case for large numerositieis, but it is modulated by the absolute number of items (set
approximate calculation [27] of dot patterns or sequential-
ly presented stimuli [28], consistently point to regions
in the mid intraparietal sulcus as the source of approxi-
mate number representations in both adults and infants
(Figure 2; recently reviewed in [29,30]).

The object tracking system
The OTS is a mechanism by which objects are represented
as distinct individuals that can be tracked through time
and space. This core system for representing objects cen-
ters on the spatio-temporal principles of cohesion (objects
move as bounded wholes), continuity (objects move on
connected, unobstructed paths), and contact (objects do
not interact at a distance). These principles enable human
infants, as well as other animals, to perceive object bound-
aries, and to predict when objects will move andwhere they
will come to rest [1].

One of the defining properties of this system is that it is
limited in capacity to three or four individual objects at a
time. This property has been confirmed using several
different tasks, such as visual short-term memory (VSTM)
tasks, whereby simple features (such as colour or orienta-
tion) of a small, limited number of objects can be accurately
retained in memory (‘visuo-spatial short-term memory
erian responses to non-symbolic numerical quantity in an fMRI number adaptation

n stimuli were sets with a fixed number of dots, whereas deviant stimuli, presented

he adaptation values. Parietal activation for deviant numerical stimuli was a direct

ber’s law [19] (b) ERP recordings of activity evoked by numerically deviant stimuli

cterize the time course of brain activation associated with the ANS, showing that

nt and the adaptation number (L-NC: large number, no change; L-SC: large number,

t �250 ms after stimulus onset (at the level of the N1 to P2p transition zone) [48]. (c)

nse for sets with one to three or four items and leveling off thereafter) in an fMRI

eight colored dots and, after a short retention period were subsequently asked to

d as the estimated number (K) of encoded colored dots at each set size, posterior

regions did not show the same response when subjects were performing an iconic

displays used for the VSTM. (d) Electrophysiological signatures of the OTS. ERP

repeated numerically fixed stimuli (EEG adaptation) show that for small sets of one

parietal electrodes is not modulated by the size of the numerical change, as it is the

size effect) [48].
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Box 1. The ANS and the OTS: two different systems?

There has been an ongoing debate about whether subitizing and the

OTS reflect a mechanism dedicated to small sets, or whether they

instead reflect the ANS, which, owing to its Weberian nature,

encodes small numbers with a higher precision than it does for

larger numbers [49,94]. More recently, however, behavioral evi-

dence for a non-estimation-like process responsible for subitizing

has been reported: first, in dual task conditions, attentional

manipulations affect subitizing but not estimation [91]; second, in

the small one to four subitizing range, the variability of the

estimates (or coefficient of variation) is lower than that in the large

10–40 range, even when the ratios between numbers is identical

across ranges; finally, the interindividual variability in subitizing

span and in large numerosity estimation precision does not

correlate across subjects [34]. Interestingly, the absence of correla-

tion between the ANS and the OTS has been recently replicated in

infants as young as nine months [20].

Further behavioral support for the distinction between the ANS

and the OTS comes from studies of young infants conducted mainly

by Feigenson and colleagues (reviewed in [51]). First, for small sets

falling within the limits of the OTS (less than four), but not for large

sets, when certain such features (such as surface area or contour

length) are pitted against number, infants sometimes attend more

automatically to those and thus fail to respond to number. Second,

if, of two sets to be compared or matched, one falls within the OTS

capacity (e.g. less than four objects) and the other one beyond

(more than four objects), the infants also fail to attend to number, or

need extremely large numerical ratios to succeed [95]. This suggests

that the OTS is automatically recruited whenever the number of

items falls within its limits and, under some occasions, might even

mask the ANS, thus interfering with otherwise perfectly feasible

numerical operations.
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SPAN’) [31], or multiple object tracking (MOT) tasks,
whereby a few moving items can be tracked in parallel
throughout the display (‘multiple objects tracking capaci-
ty’) [32]. The existence of the OTS is also evident in
enumeration tasks: subjects can determine the number
of objects in small collections of three or four items with
high accuracy and high speed, even in conditions of very
briefly presented or masked stimuli (a phenomenon called
‘subitizing’) [33,34]. For sets with more than three or four
items, enumeration is only possible either via exact count-
ing, which implies a serial scanning of the display, or via
approximate estimation, which falls under the computa-
tional constraints of the ANS, thus reflecting Weber law’s
through scalar variability (Box 1).

Similarly to the ANS, the OTS also varies across indi-
viduals [21,34,35], and is also subject to maturation: using
preferential looking paradigms, researchers have shown
that the capacity limit of the OTS develops quickly over the
first year of life, such that theOTS capacity at sixmonths is
limited to a single object, whereas its capacity reaches an
adult-like limit of three or four items at approximately 12
months [36–38] (Figure 1). The neural underpinnings of
the OTS are less clearly defined, but appear to be distinct
from the neural substrates of the ANS. Several neuroim-
aging studies using object tracking tasks report capacity-
limited neural activation, paralleling behavioral mea-
sures, in the posterior parietal and occipital regions bilat-
erally [35,39–42]. By contrast, other researchers associate
subitizing to regions of the right temporo-parietal junction
[43,44]. Neuropsychological studies indicate a crucial role
for the posterior parietal cortex in the OTS, as the inability
to track multiple items in parallel (a disorder called ‘simul-
4

tanagnosia’ [45]) typically emerges following lesions to the
bilateral posterior parietal cortex [46]. Interestingly,
patients with simultanagnosia also appear to have a re-
stricted subitizing range (at approximately two items) [47].

Electroencephalography (EEG) recordings also support
a separation between the neural signatures of the ANS and
OTS. For example, using an adaptation paradigm, Hyde
and colleagues showed that the amplitude of an early
(150 ms post-stimulus) negative peak (N1), centered over
the parietal cortex, wasmodulated by the absolute number
of elements in the display for small numbers; by contrast,
the amplitude of a later (250 ms post-stimulus) positive
peak (P2p), also centered over parietal cortex, showed an
ANS signature in that it was modulated by the ratio of
change in the large number range, regardless of the abso-
lute number of objects presented [48]. Source reconstruc-
tion of the EEG event-related potentials (ERPs) was not
performed in this study, and this did not enable any
conclusions to be drawn on the anatomical dissociation
between the ANS and the OTS.

In sum, although somewhat inconsistently across stud-
ies, the OTS appears to be associated with regions of the
posterior parietal and occipital cortices that do not appear
to overlap with regions involved in the ANS. The
electrophysiological signatures of the two systems also
appear to be distinct.

The role of the ANS and the OTS in the acquisition of
symbolic number representations
Most existing proposals of the acquisition of symbolic
number (here the term ‘symbolic numbers’ stands for
positive integers) claim that the symbols for numbers
acquire meaning by being mapped onto the pre-existing
core quantity representations: some proposals highlight
the role of the ANS [15,17,49], others the role of the OTS
[2,50], whereas others consider the combination of the two
systems as crucial [1,51] [see [52] for a concise review of the
different positions, [53] for a proposal that neither the ANS
nor the OTS has any role in learning symbolic numbers,
and Butterworth (this issue) for the proposal of an innate
representation of large exact number].

Here, I focus on the question of whether the ANS and
OTS are foundational (i.e. act as start-up tools) in symbolic
number acquisition. In critically reviewing the existing
cognitive and neuroscientific literature, I assess two crite-
ria that are definitional for neurocognitive start-up sys-
tems [3]: (i) their integrity should be a necessary (albeit not
sufficient) condition for efficient learning in a given do-
main. Thus, early impairments in a foundational system
should systematically lead to specific learning difficulties
(in this case, dyscalculia); and (ii) their computational
constraints should predict speed and ease of cultural
knowledge acquisition in children, and they could also
be observed even in adults after successful learning.

Evidence for a foundational role of the ANS in symbolic
number processing
Traces of the ANS signature in symbolic number

processing

Behavioral evidence Traces of the ANS signature in sym-
bolic number processing appear to arise almost as soon as



Figure 3. Neural evidence for a convergence between symbolic and non-symbolic number representations. (ai) Example of stimuli in a high-resolution fMRI experiment in

which subjects performed a delayed comparison task with Arabic digits and dot patterns; (ii) the scanned brain region [26]. (b) Regions active during the comparison task

and the across-subject overlap of voxels (color coding indicates the number of subjects activating the corresponding voxel). Pairwise discrimination of mean-corrected

activation patterns for different numerosities was significant for training and testing with data from dot pattern stimuli, but not for training with data from dot pattern

stimuli and testing with data from digits. Training and testing with data from digits were significantly above chance but less accurate than for dot patterns, as was

generalization from digits to dot patterns. Discrimination of the stimulus format (symbolic versus non-symbolic) for the same number was also significant and accurate. (c)

Possible scenario accounting for the asymmetric pattern of generalization reported in (b) [26]. A subset of parietal neurons initially encoding approximate number undergo

a process of tuning sharpening during the acquisition of symbolic number such that numerical quantity accessed by symbolic numbers is coded in a more precise, quasi-

categorical fashion, consistent with the simulation by Verguts and Fias [17].
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children acquire symbolic numbers. In a series of studies,
Gilmore and colleagues showed that four- to five-year-old
children, although they had not yet been taught the prin-
ciples of exact calculation, solved simple arithmetical
operations on large symbolic two-digit numbers relying
on an approximate, ratio-dependent representation of
quantity, and that they did so spontaneously [54]. More-
over, and crucially, performancewith non-symbolic numer-
ical tasks (measuring ANS acuity) predicted children’s
mastery of number words and symbols as well as perform-
ance in school-level mathematics tasks done some months
later, and is independent of achievement in reading
or general intelligence ({Gilmore [55]}, but see [56] for
failure to observe such correlation in six- to eight-year-
old children).

As children undergo formalmathematical training, they
solve symbolic numerical tasks with high precision. How-
ever, traces of the ANS remain discernible even in adult-
hood. For example, Moyer and Landauer [57] established
early on that, when adults are asked to determine which of
two symbolic numbers (Arabic digits or number words) is
larger, they are faster and make fewer errors when their
ratio is high. Symbolic ratio effects also emerge in priming
contexts, in that the speed of processing of a target number
(digit or number word) is influenced directly by the numer-
ical distance to a prime number [58,59]. Such symbolic
priming effects are already present in first graders (six to
seven years old), and their size remains stable across
development [60]. This suggests a rapid crystallization
of the internal representation of symbolic numbers accord-
ing to an internal scale that inherits some key properties of
the scale that governs the pre-existing representation of
approximate quantity (i.e. that of being approximate and
compressed).

Neuroimaging evidence Complementary evidence that
symbolic numbers map onto a core quantity code comes
from neuroimaging studies showing a format invariant
parietal response to numerical quantity. First, the same
parietal brain regions and similar ERP responses are
modulated by the distance and magnitude effects for both
Arabic digits and non-symbolic numerical quantities [61–

63]. Second, and more importantly, quantity-related
responses of the mid-intraparietal cortex transfer across
symbolic and non-symbolic formats. Thus, in an adaptation
paradigm, the parietal response to quantity is proportional
to the numerical ratio between novel and repeated quanti-
ties even when they are represented in different formats
[64]. Interestingly, this effect is not fully bidirectional
(especially in the left hemisphere): whereas adaptation
to dots extends to Arabic digits, the opposite does not occur.

A similar asymmetric effect was reported by an fMRI
‘decoding’ study in which a multi-voxel pattern classifier
trained on parietal cortex activation was used to predict
which Arabic was presented to subjects at any given trial.
The numerosity of dot patterns was also correctly classi-
fied, but not vice versa [26] (Figure 3). These data are
consistent with the idea that the parietal quantity code
accessed by symbolic numbers is more precise than the one
5



Box 2. Refining the approximate number code: neural

mechanisms

One crucial step towards the construction of a representation of

exact numbers is achieved when children understand the counting

principles. This then enables them to perform exact quantification

on sets of any cardinality, thus overcoming the low resolution of

ANS acuity. The mechanisms underlying this achievement are still

largely unknown. A possibility is that one key aspect would involve

a quick re-tuning of the coding schemes of a subset of parietal ANS

neurons, such that through interaction with a precise symbolic

system, where any number n is distinguished categorically from its

neighbors n – 1 and n + 1, the tuning curves of a subset of

numerosity detector neurons would become sharper, and the

number representations would segregate into categorically quasi-

distinct domains for the entire number range.

This proposal, also modeled by means of a neuronal network

simulation [17], is consistent with a recent neuroimaging study

reporting that, whereas MVPA algorithms trained to discriminate

symbolic numbers on the basis of the activity of a distributed set of

parietal cortex voxels, could accurately predict the corresponding

non-symbolic numerical quantities, the contrary was not possible

[26]. This suggests that, in the parietal cortex, intermingled

populations encoding numerical quantities show different coding

schemes: broader for non-symbolic numbers, and sharper, but with

preserved analog response properties, for numerical symbols.

The emergence of such new coding schemes might be mediated

by feedback ‘tuning sharpening’ projections from categorical coding

neurons in the frontal cortex [87,96,97], as suggested by higher

frontal cortex activation reported in children compared with adults

during both symbolic and non-symbolic comparison tasks [98–100].

The changes of parietal quantity coding schemes and the changes in

their coupling with inferior frontal cortex activity should be visible

using fine neuroimaging techniques during development.

Box 3. The Bootstrapping account of Carey and colleagues

Carey and colleagues suggest that children acquire the meaning of

the first number words (one to four) by constructing and storing in

long-term memory a mental model of a set of individuals for each

number, along with a procedure that determines that the number

words can be applied to any set that can be put in one-to-one

correspondence with this model [2]. For example, a mental model

for the number word ‘two’ has the form of {j k}, and a new set of two

elements (e.g. of two apples) is associated with its corresponding

number (‘two’) by one-to-one correspondences between individual

objects of the external set (each apple) and individual objects of the

internal model ({j k}). Although it is currently unstated in the theory

whether the one-to-one correspondence is itself a parallel or a serial

process, the emerging representation is not intrinsically numerical,

but rather, it is a ‘model of individuals’ [52].

Once the child has constructed these models, the number words

associated with them are then aligned with the ordered number

words in the numerical sequence, which the child initially lean by

route. This happens via a mechanism called ‘bootstrapping’. In the

case of numbers, the place-holder structure is held to be the

counting list (initially acquired as a meaningless sequence of

sounds), whereas the pre-constructed concepts are the small

number representations, issuing from the OTS, stored in long-term

memory together with the one-to-one correspondence rule. When

children notice the correspondence between the first number words

that refer to long-term memory representations of sets, and the first

number-words in the numerical sequence, they try to align those

two independent representations. The alignment between order on

the number list and order in a series of sets related by additional

individual, allows the children to make the induction: for any word

in the count list that refers to set with cardinality n, the next word in

the list refers to set with cardinality n + 1. Children are thus able to

attribute meaning to any new number word.
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for non-symbolic quantity [17], even if the former main-
tains some degree of fuzziness and compression (Box 2).

The relation between the developmental trajectory of

the ANS and the initial stages of symbolic number

acquisition

One puzzling feature of lexical acquisition in the number
domain is that it is a slow process. After they understand
that the number words refer to numerical quantities (at
approximately two years of age), and before they discover
the counting principles (at approximately four years of
age), children learn to map numbers one to four to the
corresponding cardinalities one after the other, and it
might take them up to six months to move onto the next
number [65,66]. Some researchers suggested that the
cause underlying this difficulty is the need to reconcile
two mutually incompatible systems: the ANS, providing
approximate representations of number, and the OTS,
limited in capacity to three to four items, supporting
operations on individual objects and providing an indirect
notion of exact number [2,51,52]. Others hold that lexical
acquisition is built upon the OTS without any contribution
from the ANS, and attribute the seriality of this process to
the fact that children have to learn the successor function.
This comes from learning the count list by rote first, which
is itself a serial process [2,52] (Box 3).

An alternative view, which I propose here, is that two
features of the ANS alone might account for the lexical
acquisition process before understanding the counting
principles: first, the ANS is not restricted to large numbers,
but extends to all numerosities [67–70]; and second, by
6

virtue of its weberian code and its increase in precision
during the lifespan, it comes to represent small numbers
with high precision by the first years of life. A representa-
tion of (exact) numberN, which is a necessary condition for
lexical acquisition of numbers, emerges only if children can
consistently discriminate the set of N from the numerically
adjacent sets (N-1 andN+1). Thus, children should be able
to understand accurately the numeral ‘three’ only when
they can reliably distinguish a set of three from a set of two
and a set of four (i.e. when they become sensitive to a 3:4
ratio). This occurs, according to the fit to the existing
available data, after the third year of life (Figure 1). In-
deed, children become ‘three-knowers’ at about this age
[52,66]. The present proposal further predicts that it
should be difficult to teach new number words to children
if their ANS does not enable a precise discrimination of the
corresponding quantities, a prediction that was recently
confirmed [71]. A final testable prediction also follows: ANS
acuity should tightly correlate with the interindividual
variability of lexical acquisition of number during the first
years of life.

The ANS and developmental dyscalculia

A strong prediction from the hypothesis that the ANS is a
start-up system in symbolic number processing is that
ANS impairment should engender difficulties in symbolic
number acquisition. Thus, children with dyscalculia [72]
should show impairments in the ANS. This prediction
received recent support [22,73,74] (see, however, [75,76]
for failure to detect ANS impairments in individuals with
dyscalculia, and [62] for no relationship between non-sym-
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Figure 4. ANS impairments in dyscalculia. (a) Estimated Weber fraction distribution in four populations (using the same dots comparison task): normally developing adults
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developmental dyscalculia (red line; n = 23) [22]. The ANS acuity in children with dyscalculia is lower than that of age- and IQ-matched controls, and identical to that of

kindergarten children who are five years younger. (b) Right parietal regions showing decreased ratio effect in non-symbolic number comparison in children with dyscalculia

compared with age- and IQ-matched controls [78].

Box 4. Questions for future research

� Does ANS acuity increase smoothly during development or are

there any developmental discontinuities? If so, what are they

related to?

� What is the direction of the causal relation between the ANS and

mathematical achievement? Is ANS acuity as measured early in

life a reliable and specific predictor of later mathematical

achievement?

� Does the refinement of the ANS during the lifespan reflect

maturation or is it driven by training with symbolic numbers?

� Do early impairments in the OTS engender developmental

dyscalculia?

� What are the neural underpinnings of the OTS in adults and

children?

� Currently, there is only evidence that the neural code for

approximate representations becomes less noisy, but there is no

evidence that it becomes exact. How does the brain support

representations of exact numbers?

Review Trends in Cognitive Sciences Vol.xxx No.x

TICS-922; No. of Pages 10
bolic number discrimination and individual differences in
children’s mathematical achievement). In one study, a
cohort of children aged approximately ten years old with
dyscalculia was tested, diagnosed with a standardized
battery probing knowledge of symbolic numbers and cal-
culation. The performance of this group was compared to a
group of age- and IQ-matched normally developing chil-
dren as well as a group of five-year-old children [22]. The
ANS acuity (derived from performance in a dot comparison
test) of the childrenwith dyscalculia was severely impaired
compared with that of their age-matched controls and
showed a five-year delay (Figure 4). Moreover, the size
of the ANS impairment predicted symbolic number com-
parison impairments, consistent with another recent study
reporting both non-symbolic and symbolic number com-
parison deficits in children with dyscalculia [77]. Consis-
tently, dyscalculia is associated with decreased mid-
parietal activation during both quantity comparison tasks
[78] and symbolic calculation [79], as well as anatomical
alterations in mid-parietal cortex (reduced gray matter,
abnormal gyrification and sulcal depth) compared with
control, non-dyscalculic subjects [79,80].

However, owing to the correlational nature of these
results, it is at present impossible to establish firmly the
direction of the causal links between dyscalculia, ANS
impairments, and altered parietal function and structure.
ANS impairments, together with the related parietal dys-
functions might be both the cause and the consequence of
lack of learning to manipulate symbolic numbers, inas-
much as in the dyslexia literature lack of phonological
awareness as well as altered activation in posterior peri-
silvian areas are seen both as a putative cause of the
reading impairment, but also as a consequence of lack of
learning to read [81].

In sum, although several strands of behavioral and
neuroimaging evidence point toward an important and
long-lasting role of the ANS in symbolic numerical think-
ing, the ultimate proof of its foundational role in the
acquisition of symbolic numbers will only be provided by
longitudinal investigations. At present, the only existing
longitudinal study reporting a specific correlation between
ANS acuity and mathematical achievement relates the
ANS acuity of 14-year-old children to their mathematical
proficiency earlier on (extending back to kindergarten)
[21]. However, in light of the previously discussed issues
of circular causality, it would be important to know wheth-
er ANS acuity as measured early in life, and crucially
before the acquisition of symbolic numbers, can reliably
predict subsequent success in arithmetical tasks (Box 4).

Evidence for a foundational role of the OTS in symbolic
number processing
Some theories of the acquisition of symbolic numbers
propose that the OTS is foundational because it provides
the notion of exact number and enables the endorsement of
the successor [11] relations between adjacent numbers
[2,50–52] (Box 3). Indeed, it is often claimed that
the ANS cannot provide semantic foundation to the
7
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representations of symbolic natural numbers because it
lacks these two properties [50].

Traces of OTS signatures in symbolic number

processing

Themost important computational constraint of theOTS is
that it is limited to small sets. Evidence for an important
role of the OTS in symbolic number processing has been
that the first number words are acquired initially for the
small cardinalities one to four and only after the discovery
of the counting principles, to larger sets [65,66]. When the
counting principles are acquired, however, traces of the
OTS in symbolic number processing appear to disappear:
to date, there have been no reports of abrupt differences in
behavioral or neural signatures of processing small one to
four versus larger symbolic numbers in tasks such as
comparison, naming, or arithmetic. Instead, distance
and magnitude effects, reflecting a continuous approxi-
mate and compressed scaling of numbers, typically char-
acterize symbolic number processing. Furthermore, there
is no neuroimaging evidence in either children or adults
showing activation specific to symbolic numbers that
reflects a discontinuity around the numbers three or four
in regions previously tentatively associated with the OTS,
such as posterior parietal, occipital, or right temporo-pari-
etal cortex. Instead, a progressive recruitment of mid and
inferior parietal cortex, partially overlapping with the
cerebral circuits of the ANS, especially of the left hemi-
sphere, together with a progressive reduced activation in
frontal regions appears to support the progressive master-
ing of symbolic numbers during development (reviewed in
[82]). Data from neuropsychological studies are no more
encouraging: acquired dyscalculia is neither systematical-
ly, nor even frequently, associated with disorders of multi-
ple object tracking. As discussed above, multiple object
tracking deficits (simultanagnosia) typically occur after
bilateral lesions in the posterior occipito parietal cortex
[45,46], and are not typically associated with calculation or
number representation disorders.

The relation between the developmental trajectory of

the OTS and the initial stages of symbolic number

acquisition

The capacity limit of the OTS develops quickly over the
first year of life: on average, infants have an adult-like
multiple object tracking capacity limit of three or four
items already at 12 months of age [36–38]. This means
that, by the first year of life, children already have three or
four ‘attentional pointers’ that could be used to track up to
four objects in parallel and thus to discriminate sets of one
to three or four items. Thus, if lexical acquisition in young
childrenwere to build upon theOTS, as suggested [2], then
children should be able to attach the words ‘one’, ‘two’,
‘three’, and maybe ‘four’, to the corresponding sets at once
and with little effort. Instead, as reviewed, lexical acqui-
sition for the first numbers is slow and strictly serial
[65,66]. Accounts that the seriality of number acquisition
is caused by the seriality of the acquisition of verbal
counting [2,52] are unconvincing because the numerical
sequence is acquired earlier than numerical meaning,
such that children understanding only the meaning of
8

number ‘one’ already know how to recite the number
sequence of numbers up to eight or nine [52]. Moreover,
in younger children and infants, there is evidence that the
OTS can be detrimental in numerical tasks. As reviewed
above, objects are represented in the OTS as distinct
individuals, with a given set of physical features, such
as identity, colour, surface area, contour length, and so on.
It was shown that, for small sets fallingwithin the limits of
the OTS (less than four) when certain such features (e.g.
surface area or contour length) are pitted against number,
infants sometimes automatically attend to those and thus
fail to respond to number (reviewed in [51]). It is difficult to
understand how a system that often interferes with nu-
merical tasksmight be relevant for learningmore complex
numerical representations.

OTS and developmental dyscalculia

In contrast to evidence for impairments in the ANS in
dyscalculia, there appears to be no evidence to date for
impaired OTS. Such evidence could take the form of
impairments in subitizing, the adult measure of OTS
capacity, in visuo-spatial short-termmemory capacity, also
correlated with subitizing across subjects in adults (Piazza
et al. unpublished data), or in the MOT task, where sub-
jects are asked to track the position of multiple objects
moving along independent trajectories on the display.
However, impairments in subitizing have not been con-
vincingly reported in dyscalculia. By contrast, dyscalculia
appears to be associated with slowed serial counting for
sets of more than four items [83,84]. As for visuo-spatial
short-term memory, the studies that report impairments
in dyscalculia are plentiful, but they typically use tasks
(such as the Corsi test; e.g. [85,86]) that do not assess pure
visuo-spatial span, but rather more complex abilities, such
as sequential order processing and complex visuo-motor co-
ordination. This enables no strict conclusions to be drawn
on whether children with dyscalculia have a reduced OTS.
In sum, current data do not strongly support a foundation-
al role of OTS in symbolic number acquisition.

Concluding remarks
Humans are born with strong intuitions on approximate
numerical quantities and their relations. There is evidence
to suggest that culture-based acquisition of symbols repre-
senting exact numerical quantities is grounded on these
pre-existing intuitions, whereas there is little evidence for
a foundational role of the parallel individuation system.
Current neuroimaging data suggest that representations
of exact numbers emerge through important modifications
of the pre-existing parietal coding schemes for approxi-
mate numerical quantity. Under current investigation is
the role of language and of visuo-spatial operations, such as
serial pointing and serial individuation, instantiating the
one-to-one correspondence principle in counting. This
might be mediated initially by frontal cortex regions acting
as a ‘tuning sharpener’ [87] of the core parietal approxi-
mate number code.

However, despite the current evidence suggesting the
ANS rather than the OTS is foundational in the construc-
tion of symbolic numerical thinking, there is a need for
behavioral and neuroimaging data that would clarify the



Review Trends in Cognitive Sciences Vol.xxx No.x

TICS-922; No. of Pages 10
nature of the cognitive and neural changes occurring dur-
ing the crucial period when children acquire the fist sym-
bolic numbers and learn the counting principles.
Longitudinal studies mapping the exact status of knowl-
edge before, during and after the crucial period of between
two and five years of age, when natural number concepts
are acquired, would be important to understand the rela-
tive role of the early quantification systems, how they
account for the speed and accuracy of cultural learning,
and if and how they are modified in turn by cultural
learning. This will be the starting point for new and
exciting discoveries of how humans, even though con-
strained by the limitations imposed by the functional
architecture of their primate brains, manage to construct
and combine a rich set of abstract representations.
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