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When groups compete for members, the resulting dynamics of human social activity may be un-
derstandable with simple mathematical models. Here, we apply techniques from dynamical systems
and perturbation theory to analyze a theoretical framework for the growth and decline of competing
social groups. We present a new treatment of the competition for adherents between religious and
irreligious segments of modern secular societies and compile a new international data set tracking
the growth of religious non-affiliation. Data suggest a particular case of our general growth law,
leading to clear predictions about possible future trends in society.
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The tools of statistical mechanics and nonlinear dy-
namics have been used successfully in the past to ana-
lyze models of social phenomena ranging from language
choice [1] to political party affiliation [2] to war [3] and
peace [4]. In this work, we focus on social systems com-
prised of two mutually exclusive groups in competition
for members [5–10]. We compile and analyze a new data
set quantifying the declining rates of religious affiliation
in a variety of regions worldwide and present a theory to
explain this trend.

People claiming no religious affiliation constitute the
fastest growing religious minority in many countries
throughout the world[11]. Americans without religious
affiliation comprise the only religious group growing in
all 50 states; in 2008 those claiming no religion rose to
15 percent nationwide, with a maximum in Vermont at
34 percent[12]. In the Netherlands nearly half the popu-
lation is religiously unaffiliated[13]. Here we use a min-
imal model of competition for members between social
groups to explain historical census data on the growth of
religious non-affiliation in 85 regions around the world.
According to the model, a single parameter quantifying
the perceived utility of adhering to a religion determines
whether the unaffiliated group will grow in a society. The
model predicts that for societies in which the perceived
utility of not adhering is greater than the utility of ad-
hering, religion will be driven toward extinction.

MODEL

We begin by idealizing a society as partitioned into
two mutually exclusive social groups, X and Y , the un-
affiliated and those who adhere to a religion. We as-
sume the attractiveness of a group increases with the

number of members, which is consistent with research
on social conformity[14–17]. We further assume that at-
tractiveness also increases with the perceived utility of
the group, a quantity encompassing many factors includ-
ing the social, economic, political and security benefits
derived from membership as well as spiritual or moral
consonance with a group. Then a simple model of the
dynamics of conversion is given by[1]

dx

dt
= yPyx(x, ux)− xPxy(x, ux) (1)

where Pyx(x, ux) is the probability, per unit of time, that
an individual converts from Y to X, x is the fraction of
the population adhering to X at time t, 0 ≤ ux ≤ 1
is a measure of X’s perceived utility, and y and uy
are complementary fractions to x and ux. We require
Pxy(x, ux) = Pyx(1− x, 1− ux) to obtain symmetry un-
der exchange of x and y and Pyx(x, 0) = Pyx(0, ux) = 0
to capture the idea that no one will switch to a group
with no utility or adherents. The assumptions regarding
the attractiveness of a social group also imply that Pyx is
smooth and monotonically increasing in both arguments.
Under these assumptions, for generic Pyx(x, ux) Eq. (1)
has at most three fixed points, the stability of which de-
pends on the details of Pyx (see Supplementary Material
Section S2).

A functional form for the transition probabilities con-
sistent with the minimal assumptions of the model is
Pyx(x, ux) = cxaux, where c and a are constants that
scale time and determine the relative importance of x
and ux in attracting converts, respectively. (Supplemen-
tary Figure S2 illustrates the structure of the fixed points
for this case.) If a > 1 there are three fixed points, one
each at x = 0 and x = 1, which are stable, and one at
0 < x < 1, which is unstable. For a < 1 the stability of
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these fixed points is reversed. For the boundary at a = 1,
there are only two fixed points, one of which is stable and
the other unstable (see Supplementary Material Section
S3).

1820 2000
0

0.15

0.3

1850 1950 2050
0

0.4

0.8

1900 1950 2000
0

0.03

0.06

1945 1975 2005
0

0.08

0.15

Year

F
ra

ct
io

n 
un

af
ill

ia
te

d

(a) (b)

(d)(c)

FIG. 1. Percentage religiously unaffiliated versus time in four
regions: (a) the autonomous Aland islands region of Finland,
(b) Schwyz Canton in Switzerland, (c) Vienna Province in
Austria, (d) the Netherlands. Red dots indicate data points
from census surveys, black lines indicate model fits. Relative
utilities for the religiously unaffiliated populations as deter-
mined by model fits were ux = 0.63, 0.70, 0.58, 0.56.

In Figure 1 we fit the model to historical census data
from regions of Finland, Switzerland, Austria, and the
Netherlands, four of 85 worldwide locations for which we
compiled and analyzed data. The initial fraction unaf-
filiated x0 and the perceived utility ux were varied to
optimize the fit to each data set, while c and a were
taken to be global. A broad minimum in the error near
a = 1 indicated that as a reasonable choice (see Supple-
mentary Material Section S4). Figure 1(d) shows that,
if the model is accurate, nearly 70% of the Netherlands
will be non-affiliated by midcentury.

The behavior of the model can be understood ana-
lytically for a = 1, in which case we have dx/dt =
cx(1 − x)(2ux − 1): logistic growth. An analysis of the
fixed points of this equation tells us that religion will
disappear if its perceived utility is less than that of non-
affiliation, regardless of how large a fraction initially ad-
heres to a religion. However, if a is less than but close
to one, a small social group can indefinitely coexist with
a large social group. Even if a ≥ 1 it is possible that so-
ciety will reach such a state if model assumptions break
down when the population is nearly all one group.

Figure 2 shows the totality of the data collected and
a comparison to the prediction of Eq. (1) with a = 1,
demonstrating the general agreement with our model.
Time has been rescaled in each data set and the ori-
gin shifted so that they lie on top of one another. See
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FIG. 2. All data on changes in religious affiliation with time
(85 data sets). Time has been rescaled so data sets lie on top
of one another and the solution curve with ux = 0.65. Red
dots correspond to regions within countries, while blue dots
correspond to entire countries. Black line indicates model
prediction for ux = 0.65.

Supplementary Material Section S3 for more details.
Our assumption that the perceived utility of a social

group remains constant may be approximately true for
long stretches of time, but there may also be abrupt
changes in perceived utility, a possibility that is not in-
cluded in the model. We speculate that for most of hu-
man history, the perceived utility of religion was high
and of non-affiliation low. Religiously non-affiliated peo-
ple persisted but in small numbers. With the birth of
modern secular societies, the perceived utility of adher-
ence to religion versus non-affiliation has changed signifi-
cantly in numerous countries[11], such as those with cen-
sus data shown in Fig. 1, and the United States, where
non-affiliation is growing rapidly[18].

One might ask whether our model explains data better
than a simple empirical curve. Logistic growth would be
a reasonable null hypothesis for the observed data, but
here we have provided a theoretical framework for ex-
pecting a more general growth law (1), and have shown
that data suggest logistic growth as a particular case of
the general law. Our framework includes a rational math-
ematical foundation for the observed growth law.

GENERALIZATIONS

We have thus far assumed that society is highly inter-
connected in the sense that individual benefits stem from
membership in the group that has an overall majority.
For that reason, the model as written is best applied on
a small spatial scale where interaction is more nearly all-
to-all. We can generalize this model to include the effects
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of social networks: rather than an individual deriving
benefits from membership in the global majority group,
he or she will instead benefit from belonging to the local
majority among his or her social contacts[7, 19]. In or-
der to define “local,” however, we must introduce either
a spatial dimension to the problem, or a network defining
social interaction. On a network, Eq. (1) becomes:

d〈Ri〉
dt

= (1− 〈Ri〉)Pyx(xi, ux)− 〈Ri〉Pyx(1− xi, 1− ux)

(2)
where

xi =

N∑

j=1

AijRj

/
N∑

j=1

Aij (3)

defines the local mean religious affiliation, A is a binary
adjacency matrix defining the social network and R is a
binary religious affiliation vector (1 indicates membership
in group X). An ensemble average has been assumed in
order to write a derivative for the expected religious affil-
iation 〈Ri(t)〉 in (2), since this system is stochastic rather
than deterministic. In the all-to-all coupling limit, A = 1
and xi = x̄, so (2) reduces to (1).

A further generalization to a continuous system with
arbitrary coupling can be constructed with the introduc-
tion of a spatial dimension. The spatial coordinate ξ will
be allowed to vary from −1 to 1 with a normalized cou-
pling kernel G(ξ, ξ′) determining the strength of connec-
tion between spatial coordinates ξ and ξ′. The religious
affiliation variable R now varies spatially and temporally
with 0 ≤ R(ξ, t) ≤ 1, so individuals may have varying
degrees of affiliation. Then the dynamics of R satisfy

∂R

∂t
= (1−R)Pyx(x, ux)−RPyx(1− x, 1− ux) (4)

in analogy with the discrete system. Here x represents
the local mean religious affiliation,

x(ξ, t) =

∫ 1

−1
G(ξ, ξ′)R(ξ′, t)dξ′ . (5)

Note that simulation of Eq. (2) with continuous real-
valued R and large N is equivalent to integration of
Eq. (4) with appropriate initial conditions and appro-
priately chosen G(ξ, ξ′). This is because (2) goes from a
stochastic system for binary R, to a deterministic system
for real R ∈ [0, 1].

In the case of all-to-all coupling, G(ξ, ξ′) = 1/2, and

x(ξ, t) = 1
2

∫ 1

−1R(ξ′, t)dξ′ = R̄(t), independent of space,

where R̄ is the spatially averaged value of R. Then (4)
becomes

∂R

∂t
= (1−R)Pyx(R̄, ux)−RPyx(1− R̄, 1− ux) . (6)

If at some time t R(ξ, t) = R0(t) is independent of
space, then R̄(t) = R0(t) and Eq. (6) becomes

∂R0

∂t
= (1−R0)Pyx(R0, ux)−R0Pyx(1−R0, 1−ux) , (7)

which follows dynamics identical to the original two-
group discrete system (1).

We can impose perturbations to both the coupling
kernel (i.e., the social network structure) and the spa-
tial distribution of R values to examine the stability of
this system and the robustness of our results for the all-
to-all case. One very destabilizing perturbation consists
of perturbing the system towards two separate clusters
with different R values. These clusters might represent a
polarized society that consists of two social cliques in
which members of each clique are more strongly con-
nected to members of their clique than to members of
the other clique. Mathematically, this can be written as
G(ξ, ξ′) = 1

2 + 1
2δ(2H(ξ) − 1)(2H(ξ′) − 1), where δ is

a small parameter (δ � 1) that determines the ampli-
tude of the perturbation and H(ξ) represents the Heav-
iside step function. This kernel implies that individuals
with the same sign of ξ are more strongly coupled to one-
another than they are to individuals with opposite-signed
ξ.

The above perturbation alone is not sufficient to
change the dynamics of the system—a uniform state
R(ξ, t0) = R0 will still evolve according to the dynamics
of the original system (1) (See Supplementary Material
Section S5).

We add a further perturbation to the spatial distri-
bution by imposing R(ξ, t0) = R0 + ε sgn(ξ), where ε is
a small parameter. This should conspire with the per-
turbed coupling kernel to maximally destabilize the uni-
form state.

Surprisingly, an analysis of the resulting dynamics re-
veals that this perturbed system must ultimately tend to
the same steady state as the original unperturbed sys-
tem. Furthermore, the spatial perturbation must even-
tually decay exponentially, although an initial growth is
possible. (See Supplementary Material Section S5 for
more details on the perturbative analysis.)

The implication of this analysis is that systems that are
nearly all-to-all should behave very similarly to an all-to-
all system. In the next Section we describe a numerical
experiment that tests this prediction.

NUMERICAL EXPERIMENT

We design our experiment with the goal of controlling
the perturbation from an all-to-all network through a sin-
gle parameter. We construct a social network consisting
of two all-to-all clusters initially disconnected from one-
another, and then add links between any two nodes in
opposite clusters with probability p. Thus p = 1 cor-
responds to an all-to-all network that should simulate
(1), while p = 0 leaves the network with two discon-
nected components. Small perturbations from all-to-all
correspond to p near 1, and p can be related to the cou-
pling kernel perturbation parameter δ described above as
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FIG. 3. Results of simulation of the discrete stochastic model
(2) on a network with two initial clusters weakly coupled to
one another. The ratio p of out-group coupling strength to
in-group coupling strength is (a) p = 0.01; (b) p = 0.40; (c)
p = 0.80 (N = 500). Steady states are nearly identical to the
predictions of the all-to-all model (1).
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FIG. 4. Variation in the behavior of system (4) with increas-
ing perturbation off of all-to-all (N = 500, x0 = 0.1, u = 0.6).
Equivalent values of the perturbation parameter δ in order of
decreasing p are δ = 0, δ = 0.14, δ = 0.60, and δ = 0.98.

p = (1−δ)/(1+δ) (assuming all links in the network have
equal weight). The size of each cluster is determined by
the initial condition x0 as NX = x0N , NY = (1− x0)N .

Figure 3 compares the results of simulation of system
(2) with varying perturbations off of all-to-all. The theo-
retical (all-to-all) separatrix between basins of attraction
is a vertical line at ux = 1/2. Even when p = 0.01, when
in-group connections are 100 times more numerous than
out-group connections, the steady states of the system
and basins of attraction remain essentially unchanged.

In the case of the continuous deterministic system (4),
the equivalent figure to 3 is extremely boring: numeri-
cally, the steady states of the perturbed system are in-
distinguishable from those of the unperturbed all-to-all
system, regardless of the value of p (see Supplementary
Section S6 and Figure S5).

The only notable difference between the dynamics of

the continuous networked system and the dynamics of
the original all-to-all system (1) is a time delay d appar-
ent before the onset of significant shift between groups
(see Figure 4). We were able to find an approximate ex-
pression for that time delay as d ∝ − ln p/(2u − 1) (see
Supplementary Material Section S7, figures S6 and S7).

What we have shown by the generalization of the
model to include network structure is surprising: even
if conformity to a local majority influences group mem-
bership, the existence of some out-group connections is
enough to drive one group to dominance and the other to
extinction. In the language of references [7–9], the pop-
ulation will reach the same consensus, despite the exis-
tence of individual cliques, as it would without cliques,
with only the addition of a time delay.

In a modern secular society there are many opportuni-
ties for out-group connections to form due to the preva-
lence of socially integrated institutions—schools, work-
places, recreational clubs, etc. Our analysis shows that
just a few out-group connections are sufficient to explain
the good fit of Eq. (1) to data, even though Eq. (1) im-
plicitly assumes all-to-all coupling.

CONCLUSIONS

We have developed a general framework for model-
ing competition between social groups and analyzed the
behavior of the model under modest assumptions. We
found that a particular case of the solution fits census
data on competition between religious and irreligious seg-
ments of modern secular societies in 85 regions around
the world. The model indicates that in these societies
the perceived utility of religious non-affiliation is greater
than that of adhering to a religion, and therefore pre-
dicts continued growth of non-affiliation, tending toward
the disappearance of religion. According to our calcu-
lations, the steady-state predictions should remain valid
under small perturbations to the all-to-all network struc-
ture that the model assumes, and, in fact, the all-to-
all analysis remains applicable to networks very differ-
ent from all-to-all. Even an idealized highly polarized
society with a two-clique network structure follows the
dynamics of our all-to-all model closely, albeit with the
introduction of a time delay. This perturbation analysis
suggests why the simple all-to-all model fits data from
societies that undoubtedly have more complex network
structures.

For decades, authors have commented on the surpris-
ingly rapid decline of organized religion in many regions
of the world. The work we have presented does not ex-
clude previous models, but provides a new framework for
the understanding of different models of human behavior
in majority/minority social systems in which groups com-
pete for members. We believe that, with the application
of techniques from the mathematics of dynamical sys-
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tems and perturbation theory, we have gained a deeper
understanding of how various assumptions about human
behavior will play out in the real world.

This work was funded by Northwestern University and
The James S. McDonnell Foundation. The authors thank
P. Zuckerman for useful correspondence.
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1. GENERALITY OF MODEL

The model presented in this paper is applied to the
widespread phenomenon of religious shift, but may be
more generally applicable to a variety of competitive so-
cial systems. The model allows for either competitive ex-
clusion (a ≥ 1) or stable coexistence (a < 1) in systems
composed of two social groups, and makes sense in the
context of social networks. A similar model (reference
10) was applied to the phenomenon of language death.
Some other competitive social systems in which identical
or very similar models may apply include, for example,
smoker vs. non-smoker, vegetarian vs. meat-eater, obese
vs. non-obese, and Mac user vs. PC user.

2. WHY THREE FIXED POINTS

In the main text of our paper, we state that there
can be at most three fixed points for “generic” functions
Pyx(x; ux) that satisfy our assumptions of symmetry,
monotonicity, C∞ continuity, and limiting properties. In
this section we will clarify the meaning of “generic”.

Pyx is a non-negative function of x parametrized by ux

(which will henceforth be abbreviated as simply u). The
fixed points x∗ can be written as solutions to the equation
0 = (1−x)Pyx(x; u)−xPyx(1−x; 1−u) for a given value
of u. When u = 0 the limiting properties Pyx(0; u) = 0
and Pyx(x; 0) = 0, along with monotonicity, imply that
only x∗ = 0 and x∗ = 1 can be fixed points, with x∗ = 0
the only stable fixed point. When u = 1, similarly, only
x∗ = 0 and x∗ = 1 can be fixed points, with only x∗ = 1
stable.

If there is a single intermediate fixed point x∗ ̸= 0, x∗ ̸=
1 for all values of u ∈ (0, 1), then it must limit to x∗ → 0
when u → 0 and x∗ → 1 when u → 1 (assuming it’s
stable—the opposite will be true if it is unstable). In or-
der for other fixed points to appear, the continuous curve
connecting (x; u) = (0; 0) to (x; u) = (1; 1) would have to
have zero slope at some value of u (see Supporting Figure
S1). Thus the condition for a single intermediate fixed
point is that dx/du > 0 for all u (stable), or dx/du < 0
for all u (unstable).

SUPPORTING FIG. S1. Typical fixed points for Eq. (1).
Here Pyx(x; u) = cxaux, with (a) a = 3 and (b) a = 1

2
. Red

open lines indicate unstable branches, black solid lines indi-
cate stable branches of fixed points. Panel (a) demonstrates
that the intermediate unstable branch of fixed points x∗

u(ux)
serves as a separatrix, with all other initial conditions leading
to x = 0 or x = 1. Panel (b) demonstrates how the stable
fixed point x∗

s(ux) typically varies with ux. If the interme-
diate fixed point is unstable, it must limit to x∗

u → 1 when
ux → 0 and x∗

u → 0 when ux → 1.

For a separable function Pyx(x; u) = X(x)U(u),
X(x) > 0, U(u) > 0, the implications of this
condition are as follows. The fixed point equation
(1 − x)Pyx(x; u) = xPyx(1 − x; 1 − u) becomes (1 −
x)X(x)U(u) = xX(1 − x)U(1 − u), and, assuming x ̸= 0
and x ̸= 1,

U(u)

U(1 − u)
=

x

1 − x

X(1 − x)

X(x)
.

Thus

[
U(u)

U(1 − u)

]′
du

dx
=

[
x

1 − x

X(1 − x)

X(x)

]′
.

Since
[

U(u)
U(1−u)

]′
= [U ′(u)U(1−u)+U(u)U ′(1−u)]/U2(1−

u) > 0 ∀ u due to assumptions (monotonicity implies that
U and U ′ must both be positive for all nonzero argu-
ments), the condition dx/du < 0 becomes

[
x

1 − x

X(1 − x)

X(x)

]′
< 0 .
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This can be simplified to

X ′(x)

X(x)
+

X ′(1 − x)

X(1 − x)
>

1

x
+

1

1 − x
.

The direction of the inequality would be reversed for a
stable intermediate fixed point. Note that a sufficient
condition would be X ′/X > 1/x. This, or the same
condition with the inequality reversed, is clearly satis-
fied for any power law form Pyx(x; u) ∼ xa, a ̸= 1.
It is also satisfied for any function with a monotonic
first derivative X ′(x) (Sketch of proof: Let X ′(x) =
X ′

0 + f(x), where f(x) ≡
∫ x

0
X ′′(ξ)dξ is a monotoni-

cally increasing function. Then xX ′(x) = xX ′
0 + xf(x)

and X(x) =
∫ x

0
X ′(ξ)dξ = xX ′

0 +
∫ x

0
f(ξ)dξ. Thus

xX ′(x) − X(x) = xf(x) −
∫ x

0
f(ξ)dξ. That last quan-

tity is necessarily greater than zero for any monotoni-
cally increasing f(x), and therefore xX ′(x) > X(x), or
X ′/X > 1/x.)

An analogous result holds for inseparable functions
Pyx(x; u). Using the same approach, the condition is:

1

x
P ′

yx(x; u) +
1

1 − x
P ′

yx(1 − x; 1 − u) >

1

x2
Pyx(x; u) +

1

(1 − x)2
Pyx(1 − x; 1 − u) ,

where prime notation represents a derivative with respect
to the argument, not the parameter. Thus a sufficient
condition is P ′

yx(x; u)/Pyx(x;u) > 1/x for all u. The full
condition is satisfied by any function for which curvature
doesn’t change sign.

3. STABILITY OF FIXED POINTS

Examine the stability of the fixed point at x = 0 (and
note that the same argument will work for the stability of
the fixed point at x = 1). Set x = η, a small perturbation
from x = 0. Then

η̇ = (1 − η)Pyx(η; u) − ηPyx(1 − η; 1 − u)

≈ Pyx(0; u) + η
[
P ′

yx(0;u) − Pyx(0;u) − Pyx(1; 1 − u)
]

= −η
[
Pyx(1; 1 − u) − P ′

yx(0;u)
]

to O(η2). So the fixed point x∗ = 0 is stable to small
perturbations if Pyx(1; 1 − u) > P ′

yx(0;u). For a power
law Pyx ∼ xa, this will be true only when a > 1. The
fixed point x∗ = 0 will be unstable for a < 0, and its
stability will depend on the sign of u − 1

2 when a = 1.
The stability of the intermediate fixed point is fully de-

termined once the stabilities of the two endpoints x∗ = 0
and x∗ = 1 are known. Because it is a one-dimensional
flow, the intermediate fixed point must be stable when
the endpoints are unstable, and vice-versa when the end-
points are stable (see Figure S2).

SUPPORTING FIG. S2. The flow in x for various values
of the constant a. Filled circles indicate stable fixed points,
while open circles indicate unstable fixed points. The leftmost
fixed points correspond to x = 0, while the rightmost fixed
points correspond to x = 1.

4. DATA SETS AND MODEL FITS

Data used in validating this model originated in census
surveys from a range of countries worldwide. A total of 85
data sets had 5 or more independent data points. These
came from various regions of 9 different countries: Aus-
tralia, Austria, Canada, the Czech Republic, Finland,
Ireland, the Netherlands, New Zealand, and Switzerland.

Fitting was done by minimizing root-mean-square er-
rors. Using a functional form Pyx = cxau, the parameters
c and a were taken to be universal while the parameter u
was allowed to vary with each data set. This was accom-
plished by simultaneously optimizing c, a, and u1...uN

such that the RMS error summed over all N data sets
was minimized.

Supporting Figure S3 shows how that summed error
varied with the parameter a. We chose a ≈ 1 for the fits
discussed in this paper both for simplicity and because of
the broad minimum visible around a = 1. The parameter
c, which simply sets a time scale, was approximately 0.2.

5. PERTURBATION OF NETWORK
STRUCTURE

In this section we examine in greater depth the im-
plications of Eq. (4), a continuous deterministic system
with arbitrary coupling.

All-to-all coupling

If G(ξ, ξ′) = 1/2 then there is uniform all-to-all coupling,

and we see that x(ξ, t) = 1
2

∫ 1

−1
R(ξ′, t)dξ′ = R̄(t), inde-

pendent of space, where R̄ is the spatially averaged value
of R.
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SUPPORTING FIG. S3. Summed root-mean-square error
over all data sets versus parameter a in Pyx = cxaux. The er-
ror was calculated by finding the combination of parameters c,
x0i and uxi (where i varies over all data sets) that minimized
the root mean square error between the model predictions and
the data. Blue curve indicates exact error calculations, red
indicates smoothed error after convolution with a Gaussian
(inset). Note that there appears to be a broad minimum near
a = 1.

Then (4) becomes

∂R

∂t
= (1 − R)Pyx(R̄; u) − RPyx(1 − R̄; 1 − u) (S1)

If at some time t∗ R(ξ, t∗) = R0(t
∗) is independent of

space, then R̄(t∗) = R0(t
∗) and Eq. (S1) becomes

∂R0

∂t
= (1−R0)Pyx(R0; u)−R0Pyx(1−R0; 1−u) , (S2)

which follows dynamics identical to the original two-
group discrete system.

Perturbation off of uniform R with all-to-all coupling

We impose a destabilizing perturbation such that the
portion of the population with ξ < 0 has lower R and
the portion with ξ > 0 has higher R, i.e.,

R(ξ, t0) = R0 + ϵ sgn(ξ) , (S3)

where ϵ is a small parameter. Then x(ξ) =
1
2

∫ 1

−1
R(ξ′)dξ′ = R0, and from (4) we get

∂R

∂t
=(1 − R0 − ϵ sgn(ξ))Pyx(R0;u)

− (R0 + ϵ sgn(ξ))Pyx(1 − R0; 1 − u) (S4)

We can also look at the dynamics of the mean religious
affiliation R̄,

∂R̄

∂t
=

∂

∂t

(
1

2

∫ 1

−1

R(ξ′, t)dξ′
)

=
1

2

∫ 1

−1

∂R(ξ′, t)
∂t

dξ′ .

(S5)
Plugging (S4) into (S5) and simplifying gives

∂R̄

∂t
=

∂R0

∂t
= (1−R0)Pyx(R0; u)−R0Pyx(1−R0; 1−u) ,

(S6)
so the mean religious affiliation R̄(t) continues to follow
the dynamics of the original system despite the pertur-
bation.

Rearranging (S4), we see

∂R

∂t
=

∂R0

∂t
− ϵ sgn(ξ)(Pyx(R̄; u) + Pyx(1 − R̄; 1 − u)) ,

(S7)
and direct differentiation of (S3) yields

∂R

∂t
=

∂R0

∂t
+

∂ϵ

∂t
sgn(ξ) . (S8)

Equating these expressions yields a differential equation
for ϵ(t):

∂ϵ

∂t
= −ϵ(Pyx(R̄; u) + Pyx(1 − R̄; 1 − u)) . (S9)

Note that ϵ remains independent of the spatial coordi-
nate, and that ϵ → 0 as t → ∞, for any initial condi-
tion (the time constant may vary with the parameter u
and the state R̄). So the initial perturbation must damp
out, and the system must evolve to a single affiliation as
t → ∞, just as the original system (1) did.

Non-uniform coupling

We consider the case of non-uniform spatial coupling as
the continuum limit of a discrete network where the links
are nearly but not quite all-to-all. In that case, a very
destabilizing perturbation would be one in which the
network is segregated into two clusters, each one more
strongly coupled internally than externally. As described
in the main text, one kernel representing such coupling
is

G(ξ, ξ′) =
1

2
+

1

2
δ(2H(ξ) − 1)(2H(ξ′) − 1) , (S10)

where δ is a small parameter (δ ≪ 1) that determines
the amplitude of the perturbation and H(ξ) represents
the Heaviside step function.

If the initial state of the population is uniform such

that R(ξ, t0) = R0 then x(ξ, t0) =
∫ 1

−1
G(ξ, ξ′)R0dξ′ =

R0 and R will satisfy Eq. (4), giving

∂R0

∂t
= (1−R0)Pyx(R0; u)−R0Pyx(1−R0; 1−u) . (S11)
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Thus R will remain uniform in space and will follow the
same dynamics as the original system, despite a non-
uniform coupling kernel of arbitrary amplitude.

Perturbation off of uniform R with non-uniform
coupling

As before, we impose a destabilizing perturbation such
that the portion of the population with ξ < 0 has lower R
and the portion with ξ > 0 has higher R, i.e., R(ξ, t0) =
R0 + ϵ sgn(ξ), where ϵ is again a small parameter. This
should conspire with the perturbed coupling kernel to
maximally destabilize the uniform state.

Now (5) gives

x(ξ, t) =(R0 − ϵ)

∫ 0

−1

G(ξ, ξ′)dξ′+

(R0 + ϵ)

∫ 1

0

G(ξ, ξ′)dξ′

=R0 + ϵδ sgn(ξ) , (S12)

and from (4) we get

∂R

∂t
= (1 − R0 − ϵ sgn(ξ))Pyx(R0 + ϵδ sgn(ξ);u)

− (R0 + ϵ sgn(ξ))Pyx(1 − R0 − ϵδ sgn(ξ); 1 − u) .
(S13)

Directly differentiating R(ξ, t0) = R0 + ϵ sgn(ξ), then
rearranging terms on the right-hand-side of (S13) gives

∂R0

∂t
+ sgn(ξ)

∂ϵ

∂t
= (1 − R0)Pyx(R0 + ϵδ sgn(ξ);u)

− R0Pyx(1 − R0 − ϵδ sgn(ξ); 1 − u) − ϵ sgn(ξ) [Pyx(R0

+ ϵδ sgn(ξ);u) + Pyx(1 − R0 − ϵδ sgn(ξ); 1 − u)] .
(S14)

Now calculate ∂R0

∂t directly. Note that R0 = R̄ =
1
2

∫ 1

−1
R(ξ′, t)dξ′, so

∂R0

∂t
=

∂

∂t

(
1

2

∫ 1

−1

R(ξ′, t)dξ′
)

=
1

2

∫ 1

−1

∂R(ξ′, t)
∂t

dξ′

=
1

2

∫ 1

−1

[
(1 − R0 − ϵ sgn(ξ′))Pyx(R0 + ϵδ sgn(ξ′);u) − (R0 + ϵ sgn(ξ′))Pyx(1 − R0 − ϵδ sgn(ξ′); 1 − u)

]
dξ′

=
1

2
(1 − R0)

[
Pyx(R0 − ϵδ; u) + Pyx(R0 + ϵδ; u)

]
− 1

2
R0

[
Pyx(1 − R0 + ϵδ; 1 − u) + Pyx(1 − R0 − ϵδ; 1 − u)

]

+
1

2
ϵ
[
Pyx(R0 − ϵδ; u) − Pyx(R0 + ϵδ; u)

]
+

1

2
ϵ
[
Pyx(1 − R0 + ϵδ; 1 − u) − Pyx(1 − R0 − ϵδ; 1 − u)

]
.

Taylor expanding in both ϵ and δ eliminates all first order
terms in ϵ, leaving

∂R0

∂t
= (1−R0)Pyx(R0;u)−R0Pyx(1−R0; 1−u)+O(ϵ2δ) ,

(S15)
so the assumption that the mean religious affiliation fol-
lows the dynamics of the original unperturbed system is
well justified.

Similarly Taylor expanding Eq. (S14) to first order in
ϵ and δ allows canceling of the ∂R0/∂t terms on either
side (using (S15)), leaving an equation in ϵ:

∂ϵ

∂t
= − ϵ

{
Pyx(R0;u) + Pyx(1 − R0; 1 − u)

− δ
[
(1 − R0)P

′
yx(R0; u)

+ R0P
′
yx(1 − R0; 1 − u)

]}
. (S16)

The sign of the quantity in braces in (S16) determines

the stability of the uniform spatial state. It’s clear that
for sufficiently small δ, the uniform state will always be
stable. However, in systems with an unstable interme-
diate fixed point (or no intermediate fixed point), the
uniform state will remain stable even when the quantity
in braces is initially positive! This is because Eq. (S15)
will still hold for small ϵ, making R0 approach a steady
state value R∗

0 = 0 or R∗
0 = 1 from the original system.

Since ϵ < min(R0, 1 − R0) is required to maintain vari-
ables in the allowed domain, ϵ may initially grow, but it
will have to eventually shrink as R0 → R∗

0.
The above further shows that ϵ does not develop any

additional spatial structure, so an initial state with R =
R0+ϵ sgn(ξ) will maintain such a spatial structure as R0

and ϵ evolve in time.
This calculation demonstrates that an understanding

of the simple all-to-all discrete system gives insight into
the more complex problem of religious shift on a social



5

network. In numerical experiment, the results of the per-
turbation calculation described here remain valid even for
very sparse networks quite different from all-to-all.

6. NUMERICS

In the main text, we describe a numerical experiment
that we performed on systems (2) and (4). Figure 3 of
the main text shows the results of that experiment with
a simulated size N = 500, and in Figure S4, we show
that the all-to-all system (1) becomes a good match to
the discrete stochastic system (2) as the number of nodes
increases (thus explaining why Figure 3 is well predicted
by understanding the all-to-all system).
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SUPPORTING FIG. S4. Comparison of simulation of discrete
stochastic system (2) to model predictions for various system
sizes (all-to-all coupling). Here x0 = 0.1 and the total size of
the network is 50 (red), 100 (blue), or 500 (green). The solid
black line represents the solution to Eq. (1), the large N limit
of this model.

We also performed a our numerical experiment on (4),
the continuous deterministic generalization of (1). Re-
sults are presented in Figure S5, where the steady states
are indistinguishable from the all-to-all model.

7. TIME DELAY

We define the effective time delay d to be the delay
between the perturbed solution (not all-to-all) and the
all-to-all solution (the logistic function, when Pyx = cxau
with a ≈ 1), as measured when R̄ has risen halfway to its
asymptotic value of 1 (we assume a rising function with
no loss of generality: the symmetric case of a decaying
function can be examined under the change of variables
u 7→ 1 − u, x0 7→ 1 − x0). Thus d is the difference in the

SUPPORTING FIG. S5. Results of simulation of the contin-
uous deterministic system (4) on a network with two initial
clusters weakly coupled to one another. The ratio p of out-
group coupling strength to in-group coupling strength is (a)
p = 0.01; (b) p = 0.40; (c) p = 0.80 (N = 500). When
ux = 1/2, all points are fixed points, so the initial condition
determines the final state. Steady states are indistinguishable
from those of the all-to-all model (1) despite the non-uniform
coupling and inhomogeneous initial conditions.

time tc when a solution R̄(tc) = 1
2 (1 + R0) and tc0 when

R̄all−to−all(tc0) = 1
2 (1+R0). We observe this quantity to

increase monotonically with the perturbation off of all-to-
all δ—see Figure S6 for typical behavior at various values
of δ. In the limit that p ≪ 1 (δ near 1, nearly two sepa-
rate clusters) we find that the curve is well approximated
by d ∝ − ln(p)/(2u − 1).
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SUPPORTING FIG. S6. Variation in the behavior of systems
(2) and (4) with increasing perturbation off of all-to-all. This
illustrates delay time as inter-cluster connection probability
p varies. Equivalent values of the perturbation parameter δ
in order of decreasing p are δ = 0, δ = 0.14, δ = 0.60, and
δ = 0.98. Left panel: Discrete stochastic system (2) (ensemble
averages of 10 realizations). Right panel: Continuous deter-
ministic system (4). For all simulations x(0) = 0.1, u = 0.6
and N = 500.

We find this form by assuming R̄(t) ≈ R̄0 + ηy(t) +
O(η2) for η ≪ 1, then eliminating terms of order higher
than linear in the equation governing R̄ ((4) after simpli-
fying for two cliques). We then expand this approximate
equation for small p, retaining only lowest order terms.
The resulting system is linear and can be solved exactly
for the critical time tc at which R̄ rises to (1 + x0)/2.
The delay is simply the difference between that time and
tc0 = − ln(x0/(1+x0))/(2u− 1), the critical time for the
all-to-all p = 1 system.
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Based on numerical work, the general behavior of this
approximation—d ∝ − ln p—seems to remain valid even
for large p, although the additive constant seems to
change (see Figure S7). That is to be expected, since
d → 0 is required for p → 1.
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SUPPORTING FIG. S7. Variation of time delay d with in-
creasing inter-cluster connection probability p. Points and
error bars indicate mean and standard deviation with 10 real-
izations. Lines show estimated logarithmic dependence. Left
Panel: Discrete stochastic system (2). Right panel: Contin-
uous deterministic system (4). For all simulations N = 500,
x(0) = 0.1 and u = 0.6.
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